
DISTRZBTJTED DBMS:
AN E V ~ P T A T I O N

by George Schussel

CHAPTER 1 - HISTORY AND DEVELOPMENT OF THE MARKET FOR DISTRIBUTED
DBMS SOFTWARE

The market for modern distributed DBMS software started in 1987 with the announcement
of INGRES-STAR, a distributed relational system from RTI of Alameda, California.
Most of the original research on distributed database technology for relational
systems took place at IBM Corporation in IBM's two principal California software
laboratories, Alrnaden and Santa Theresa. The first widely discussed distributed
relational experiment was a project called R-Star, developed within IBM's
laboratories. It is because of IBM's early use of the word STAR in describing this
technology that most vendor's distributed database systems names have incorporated
"STAR" in one form or in another.

Today, the market for distributed DBMS is almost entirely based on the SQL language and
extensions. (Principal exceptions being Computer Associates with its distributed
DATACOM, and Fox Software with its newly announced Fox Server.)

There are three broad segment to the market
1.True distributed DBMS
2.Distributed access (m o t e data access)
3. Client Server

True distributed DBMS products can be considere2 to occupy the Mercedes Benz segment
of the the market place. These products support a local DBMS at every node in the
netwark along with local data dictionary capability. Their capability will be
discussed in Chapter 2. The market for true distributed DBMS is growing s l o w for
two reasons: 1) users aren't sure of how to use the products and 2) the vendors are
taking the better part of a decade to deliver full functionality. One important
unanswered concern of companies who want use true fully distributed DBMS environments
is the cost of the communications for functions that have historically been rn
internal to single computers.

Distributed access can properly be thought of as a subset of technologies that are
being delivered by those vendors selling true distributed DBMS or client server DBMS
technologies. The goal of distributed access is to provide gateways for access to
data that is not local. The demand, of course, is greatest for the most popular
mainframe file and database environments such as IMS, DB2, VSAM, and Rdb. Local
DBMS capability is not a requirement for distributed access. Most vendors provide a
piece of software known as a requestor to be run in the client side of the RDA
environment. Some of the products in this market are not fhished gateways but
toolkits for users to build their own custom gateways.

DISTRIBUTED DBMS: AN EVALUATION c by George Schussel

If true distributed DBMS products are the top of the market then client server DBMS
engines are the Fords and Chemlets. By accepting some reduction in functionality
from the definition of the fully distributed DBMS, a user is able to use client server
technology to build a distributed computing environment which will run exceedingly
well with today's hardware and networking techniques.

The market place for client server approaches is going to be far larger in dollar
volume than for either true distributed DBMS or gateway technology. The leading
vendors of servers, however are also likely to be the leaders in selling gateway access
solutions.

As vendors improve the software capabilities of their client server systems it is
likely that functional differences between client server and true distributed DBMS
products will tend to disappear. I don't predict this to happen before the mid 1990s.

The functionality delivered by today's client server systems is not that different
from true distributed DBMS. The key difference is that a client server approach only
has a DBMS and Dictionarg at certain designated nodes where the data resides. The
client program is required to navigate to the correct server node by physically
knowing which particular server to access for the necessary data.

The idea for client server computing grew out of database machine vendor approaches.
Sybase's Robert Epstein had worked for Britton Lee when he came up with the idea of
creating a database machine environment, but with a server that was a virtual machine
rather than a physically unique piece of hardware. The systems software, then, was
separated into a front end (client) which ran the program (which would be written in a
4GL) and a back end (server) which handled the DBMS chores. The advantage of this idea
was that the back-end virtual database machine could physically be moved out onto a
different piece of hardware whenever desired. What made this approach different from
the Britton Lee approach was that Sybase planned for the server to be a generic VAX,
UNIX, or PC machine rather than unique custom build database hardware. By moving the
database machine into a standard piece of hardware Sybase picked up the advantage of
vastly improving price performance in generic small systems.

At about the same time that Epstein was starting Sybase, Umang Gupta (then a Senior
Oracle executive) had come up with the same idea and left Oracle to form Gupta
Technologies.

Most other SQL DBMS vendors have jumped into the client server game. An exception is
IBM, which while talking about "client server" really means true distributed
computing. IBM is building a fulliy functional distributed architecture for its SQL
products, DB2, SQL/DS, SQL/400, OS/2EE. IBM is taking several years to develop tbis
approach.

Distributed DBMS is one of the most interesting areas of the large systems DBMS market
today. (Large system here are defined as 80386 on the small end to Cray at the top.)
With the emergence of SQL as a standard, the principal ways that DBMS vendors are
differentiating their products is by adding function in:

distributed or client server computing
support for Object approaches

DISTRIBUTED DBMS: AN EVALUATION g by George Schussel

addition of database semantics
adding more relational functionality (typically semantics)

No vendor can afford to ignore distributed capabilities.

It is clear that the old line DBMS companies such as Cullinet and ADR had a market shake
out two to four years ago. Curt Monash of the Paine Webber Research Group was the most
vocal analyst predicting the demise of the mainframe DBMS market. His predictions
were made on the basis of market saturation, ascendency of DB2, and slow growth of
mainframes.

Some analysts believe that the SQL server and distributed database market place is in
for a comparable shake out now. The SQL DBMS vendors have entered choppy financial
waters the last few months. Oracle's stock has dropped from 30 to 6 while the company
has announced money losing quarters. Sybase has had a 15% layoff. Ingres is being
acquired by ASK Computer Systems.

Once again, another Paine Webber analyst, Robert Therrien, is predicting a collapse in
the DBMS industry. The following is quoted directly from his October, 1990
commentary on this subject.

"The independent database market is in the early stages of its death throes;
death for many vendors could come swiftly. Much as with the other software
business that grew up around f'llling holes in hardware vendor's operating
systems we believe the database engine has passed its prime. Most vendors did
not change their strategies in time."

'Why is a shake out occurring? Simple. The hardware vendors now supply
database engines for free (DEC's Rdb, IBM's AS/400) or at low cost (IBM's DB2).
For customers, this is actually a good thing. By making the database engine part
of the operating system hardware vendors can put parts of the engine in
microcode, speeding up the performance in some cases by an order of magnitude.
With the exception of the UNIX database engine market, the product space now
being filled by hardware vendors is now either closed or closing. Even in the
UNIX engine business (where many database vendors are planning duck for cover)
price competition is intense."

I do not have such a negative view of the market. Therrien believes that servers are
"commodity" items that respond identically to a call in SQL. Theoretically, that is
an interesting point of view, but in reality the differences in technical
capabilities amongst different vendors are quite substantial. The independent
vendors are also able to afford the advantage that made Oracle such a success - cross
platform compatibiity. For the most part hardware vendors choose not to provide
such a capability.

DISTRIBUTED DBMS: AN EVALUATION c by George Schussel

CHAPTER 2 - DISTRIBUTED DBMS TECHNOLOGY

Distributed database software has to provide all of the functionality of multi-user
mainframe database software but allow the data in the database itself to exist on a
number of different but physically connected computers. The kinds of functionality
the distributed DBMS must supply include maintenance of data integrity by
automatically locking records and rolling back transactions that are only partially
complete. The DBMS must attack deadlocks, automatic^ recovering completed
transactions in the event of system failure. There should be a capability to optimize
data access for wide variety of different application demands. Distributed DBMS
should have specialized I/O handling and space management techniques to insure fast
and stable transaction throughput. Naturally, these products must also have full
database security and administration utilities.

Lead by Ingses Corp. (formally RTI) industry analysts have agreed on the definition of
what functions above and beyond a single system, a distributed DBMS needs to perform.
A quick discussion of these functions is listed below. It isn't useful to view this
discussion as a feature checklist, since there is a great disparity between performing
these functions at a minimum level and accomplishing them at an advanced level. There
is a general feeling among the top industry analysts that Ingres provides the highest
technical functionality here with Sybase and Interbase providing reasonable seconds.
Please note that even though Ingres is the most advanced product available today it
still is only about half way toward a full level of distributed functionality.

Requirements for Distributed DBMS

1 .Location transparency
Programs and queries may access a single logical view of the database; this
logical view may be physically distributed over a number of different sites and
nodes. Queries can access distributed objects for both reading and writing
without knowing the location of those objects. A change in the physical
location of objects without change in the logical view requires no change of
application programs. There is support for a distributed JOIN. In order to
meet this requirement it is necessary for full local DBMS and data dictionary to
reside on each node.

2.Performance transparency
It is essential to have a cost-based software optimizer to create the navigation
for the satisfaction of queries. This software optimizer should determine the
best path to the data. Performance of the software optimizer should not depend
upon the original source of the query. In other words, because the query
originates from point A it should not cost more to run than the same queq
originating from point B. Technology in this field of software optimization is
rather primitive at this time and will be discussed further below.

3.Copy transparency
The DBMS should optionally support the capability of having multiple physical
copies of the same logical data. Advantages of this include superior
performance h m having local rather than remote access to data, and non-stop
operation in the event of one site going down. If a site is down, the software

DISTRIBUTED DBMS: AN EVALUATION g by George Schussel

must be smart enough to re-route a query to anather source where data exists.
The system should support "fail over reconstruction". This means that when the
down site becomes live again that the software automatically reconstructs the
data at that site to make it current.

4.Transaction transparency
The system supports transactions that update data at multiple sites. Those
transactions behave exactly the same as others that are local. This means that
transactions will commit or abort. In order to have distributed commit
capabilities a technical protocol known as a 2-phase commit is required.

5.Fragmentation transparency
The distributed DBMS allows a user to cut relations into pieces horizontally or
vertically and place those pieces at multiple physical sites. The software has
a capability to recombine those tables into units as necessary to answer queries.

6.Schema change transparency
Changes to database object design need only to made once into the distributed
data dictionary. The dictionary and DBMS automatically populate other physical
catalogs.

7.Local DBMS transparency
The Distributed DBMS sewices are provided regardless of brand of the local DBMS.
This means that support for remote data access and gateways into heterogeneous
DBMS products are necessary.

Four ways to distribute data

Most vendors are taking many years to develop software that offers full distributed
DBMS capability. As a way of bringing its distributed SQL products to market, IBM has
proposed a phased implementation of four discrete steps enroute to distribution of
data. These four principal steps are defined below.

Extracts - the ability to extract data simply means that there is a batch process
which unloads and reformats operational data into a relational view. For example,
IBM's DXT allows for batch unloading of IMS and reformatting into DB2. This
extraction is manually managed.

Snapshots - are becoming a popular technique among many vendors. A snapshot is an
extract as defined above along with a date and time stamp. The advantage of a snapshot
is that after it's defined to the system, it is automatically created and managed.
Snapshots are read-only and are effective for providing decision support access to
true production data where operations personnel do not want live access to the
production data (normally for performance reasons).

Distributed tables - Distributed tables can be thought of as the first level of
true, real t h e , read/.ite distributed DBMS functionality that meets requirement 5)
mentioned above. A system which can support distributed tables will normally manage
a single physical copy of data to support the system's logical views.

Replicates - Replicates are a more sophisticated version of distributed DBMS
capabilities mentioned under copy transparency above. This can be thought of as
support for a single logical view by up to "n" physical copies (of the same data).
These data replicates must be updatable (not snapshots). At a minimum,

DISTRIBUTED DBMS: AN EVALUATION c by George Schussel

updatability of physical data replicates will require a software optimizer (as
discussed below) and a 2-phase update commit protocol.

Software Optimizers

When there ape different physical sites involved, the difference in cost between the
best and worst ways of accomplishing a function such as a JOIN can easily- be millions to
one. Because of this, a distributed DBMS absolutely must have a cost-based software
optimizer. Without a cost based optimizer, navigation to data must be under
programmer control, violating a basic precept of relational theorg (this is what must
be done with Oracle). Without a cost based optimizer only known queries can be
handled, since the performance of an unanticipated query may be impossible.

A reasonable software optimizer has to be intelligent enougb to ask tough questions
and to develop a correct search strategy based upon the answers to those questions.
Examples of types of issues that should be handled are:

How busy are the various machines on the network?
What are relative speed of these machines?
What are the table sizes that have to be accessed?
What is the line speed between various nodes of the network?
How busy are those lines?
How are the tables organized?
What are the access patterns in indexes?
Where should software optimizer itself run?
etc.

Two-phase commit protocol

The god of the 2-phase commit protocol is to allow multiple nodes to be updated in
synchronized fashion as result of a single group of SQL statements which must be
committed or rejected together.

The general procedure is as follows:
Lone node is designated as a master; the master sends notice of an upcoming query out

to all of the slaves.
2.The slaves respond with ready messages when all of the data necessary for the

protocol is available.
3.The master sends out a "prepare" message to the slaves,
4.The slaves lock the necessary data and respond with "prepared" message to the

master.
5.The master sends a "commit" message to the slaves.
6.The slaves respond with a "done" message.

For the DBMS somare vendor, developing a 2-phase protocol is one of the most
challenging tasks in developing a distributed DBMS. Additional complexity in
creating this software comes about from the fact that there are different types of
failure nodes and the software has to handle and recover from any combination of
failure over all environments supported. For the user, operation in an environment
requiring a 2-phase commit may be very costly. The cost comes about from the fact that
use of a 2-phase commit requires an extra round-tr* message over what happens in

DISTRIBUTED DBMS: AN EVALUATION c by George Schussel

single computer system.

There are no standards for implementation of a 2-phase commit. DBerent vendors
have come up with Merent partial implementations. It is likely that we will see a
future IS0 standard dealing with 2-phase commit protocol.

At the current time some functionality of 2-phase commit protocol is available from
the following vendors:

Sybase, E m e m e , California
Ingres, Alameda, California
Interbase, Bedford, Massachusetts
DEC, Marlborough, Massachusetts
Empress, Greenbelt, Maryland
Computer Associates, Garden City, New Jersey

Problems of Distributed Database techno lo^ --

The advantages of distributed processing and distributed DBMS are well documented
ekewhere and need not be repeated in this analysis. It is worth our while however, to
provide a quick summary of some of the problems associated with this technology.
1.Communication costs can be quite high; using a 2-phase commit protocol generates lot

of communications traEic.
2.There is need for gateway technology to handle SQL differences amongst the different

DBMS vendors.
3.The predictability of total costs for distributed queries is variable. In other

words it is hard to predict ahead of time how much it is going to cost you to get
a job done.

4.SuppoPting concurrency along with deadlock protection is a very difficult
technology.

5.Supporting full recovery with fail over reconstruction is very expensive.
6.Performing a JOIN across different physical nodes is very expensive using today's

technology and networks.
7.Some advanced relational functions that are reasonable in a single computer are

difficult and expensive across a distri'buted network, eg the enforcing of
semantic integrity restraints.

&The job of the database administrator is mare difficult than in a single computer
because all of the existing skills and requirements are still there, plus the
integrity, optimizer, communication and data owner issues of the distributed
world.

%Data security issues are not well understood or proven. It would appear that a
distributed environment is more susceptible to security breaks than a
database contained in one box.

DISTRIBUTED DBMS: AN EVALUATION c by George Schussel

CHAPTER 3 - CLIENT SERVER COMPUTING

The history of Client/Server computing was discussed in chapter 1; here we will
proceed with a definition of the technology and quick overview of the market.

Client/Server computing consists of three principal components:
Client
Server
Network

The client is where the application program rum. Normally, the client hardware is a
desktop computer such as an IBM PC. The application program itself may be written in a
4GL or in common 3rd generation languages such as C or COBOL. The screen forms run on
the client. The control of the overall computing environment also comes from the
client, which does not have control of its own data, but generates an SQL call.

The network is responsible for connecting client and server. Normally, the network
consists of some kind of wire along with the communications card in both the client and
server boxes. The communications software normally handles different types of
communication standards such as LU6.2 and TCP/IP. Typical network environments
provide support for multiple clients and servers.

The server is responsible for executing the SQL statement received from the client.
Sometimes the data request is not pure SQL but it can be a remote procedure call which
would then trigger a series of already existing SQL statements on the server. The
server is responsible for optimization of the SQL, in other words, determining the
best path to the data. The server manages the transactions. Some server technologies
support advanced software capabilities such as stored procedures, event notitiem and
triggers. The server is also responsiile for data security and validation of the
requestor. A server handles additional database functions such as

Concurrency Management
Deadlock Protection and Resolution
Logging and Recovering
Database Creation and Definition

The data dictionary runs on the server.

For most typical business applications the concept of database clienthewer
computing is an outstanding fit. The server can be a powerful PC or mini computer
running multi-user, multi-tasking server software. The client is a smaller but still
powerful PC, which has the power of running applications.

The advantages of client/server computing are overwhelming, have been recounted
elsewhere and will not be enumerated here - except to point out that client/server
computing provides the industrial strength security, integrity and database
capabilities of mini computer or mainframe architectures while allowing companies to
build and run their applications on PC and mini computer networks. The use of this
hardware and software combination can cut 90% of the costs of the hardware/software
environment for building these "industrial strength" applications. I frequently
recommend client/server computing as the preferred technology for downsizing and
implementing cooperative processing applications. A more in depth analysis of the

DISTRIBUTED DBMS: AN EVALUATION 5 by George Schussel

advantages of client/server computing can be seen at many DCI conferences - such as the
following:

Schussel & Yousdon On Emerging Software Technologies
Schussel on Application Development in the 1990s
Database World
DCI's Downsizing Conference

The first generation of PC software occurred in the 1980s. Popular products such as
WORDPERFECT, 1-2-3, and dBASE caused the sale of 50 million PCs in the just completed
decade. Most uses of the PCs in 1980s were for applications that were substantially
different from mainframe and mini computer MIS "glass house" applications.

The 1990s will witness the second generation of PC software which will provide true
integration between mainframe MIS approaches and PCs. Database client/server
technologies will lead the charge in this area.

The kinds of capabilities that are available today with client/sewer computing are
astounding. I have witnessed both Gupta and Sybase running on 386 PCs processing 8 -
12 TPl transactions/second. PC hardware can support disks with 16111s access time and
2-3MB transfer rates. Such a machine can be configured with several lOOMB of disk at a
price of under $10,000. Its TP1 processing rate would be adequate to support up to 250
automated teller machines on a single server. If Ethernet is used as the
communications environment, the network has a capability of handling up to 100
transactions per second. This kind of low cost PC oriented transaction processing
environment can easily save companies 80% or more on cost of implementing low speed
transaction processing environments.

hide:
On the issue of whether Interbase should be ported to the 0S/2
environment, a reasonable analysis would look at bdth technical and
marketing factors. This analysis is beyond the scope of this study, but
it must be pointed out that if the product is to be seriously proposed to
the market where dBASE is traditionally strong, an OS/2 version is a
requirement. (A discussion of this with Starkey indicated that the
technical port had already been accomplished and that the real issue was
the availability of tools for the OS/2 market.)

To play in the normal commercial market, Interbase will have to
significantly change its approach to marketing. General industry
exposure will be necessary and it certainly would be wise to play up the
Ashton Tate connection.

I would be happy to follow this report with a more in depth study of the
issue of porting to OS/2. That study could be completed before the end of
this year. Exact pricing would depend on what specifics Ashton Tate
wished in the report, but it should be in the ball park of $10,000. I
would recommend an in depth look at OS/2EE as part of that study. By the
time an Interbase port could be concluded, OS/2EE Data Manager will be a
formidable competitor in this market.

DISTRIBUTED DBMS: AN EVALUATION c by George Schussel

There is no reason to believe that client/server computing needs to be relegated to the
low end of the transaction processing spectrum. It is very reasonable to think of
products like Oracle and Sybase in combination with high-end machine servers fmm
companies such as Solbourne, Pyramid, Concurrent, Compaq, IBM or DEC. Using high-end
server hardware with parallel 386, 486, 586 chips and/or multi-processing RISC chips
and open operating systems (UNTX, OS/2 & LAN MANAGER) gives a vendor ability to build a
machine with 100's of MIPS processing power and 15-20 gigabytes of data at a cost of
well under $500,000. Combining this technology with SCSI and/or IPI channels allows
a configuration of new technology hardware and database server to replace a $14
million System 390 at a savings of 95Y0.

DISTRIBUTED DBMS: AN EVALUATION c by George Schussel

CHAPTER 4 - REMOTE DATA ACCESS

There is a major market demand for products that can provide access into data located
in diverse heterogeneous file and DBMS formats. Very few companies have only one type
of file or database management system installed. With a total staff of 70, DCI has
three Merent DBMS products running production systems. The proliferation of
standards typically comes about because of the purchase of software packages with
different embedded DBMS'. Companies who can create gateway paths to popular file
formats will be successful in selling their products.

Gateways can be thought of as translation and connectivity devices from various tools
and applications, normally on the desktop to various servers and foreign DBMS' running
on remote host computers. The role of the gateway is to translate the syntax and
semantics from one system to another. These translations have to be able to handle
differences in

S Q h
APIs
Catalogs
Error Messages
Communication Protocols
Logging Schemes
Back-up and Recovery Schemes

Gateway and remote data access technology has normally been considered part of the
distributed database product community and so it is natural to expect that the leading
client/server and distributed DBMS companies would be creating products in this
arena. And it is true that companies like Gupta Technologies and Sybase are among
leading vendors. Information Builders of New York and Micro Decisionware of Boulder,
Colorado are two companies that are not normally considered leading DBMS vendors, but
are leaders in RDA technology.

Generic Gateway

The attached diagram illustrates a generic gateway technology (one that is very
similar to the Sybase approach). A client program issues an SQL call or RPC to a
piece of requestor software running in client machine. That call or SQL is passed on
unchanged to the database server which can be a real or virtual machine nmnbg on the
LAN. The database server is responsible for the control and routing of the call. In
other words, it knows where to send a message to. Again, on the LAN the message is sent
to a network gateway server. Like a previous environment this gateway server may be in
same physical machine as a database server or it may be discrete. The gateway server
is responsible for doing a protocol conversion which allows it to communicate with the
mainframe. In this case our mainframe is IBM environment and an LU6.2 message is
passed on to the mainframe. A PC sourced message is not likely to be something which
the mainframe understands and so there needs to be software on the mainframe which
takes the message from the network and converts it to a CICS transaction. That
transaction then is run against the appropriate mainframe database package. Once data
is extracted the procedure is reversed.

DISTRIBUTED DBMS: AN EVALUATION c by George Schussel

CHAPTER 5 - SYBASE

Sybase is the company most responsible for changing the perception that relational
DBMS' cannot handle transaction processing applications.

SQL Server runs under various UNIX systems, OS/2, and VAXTVMS. The OS/2 version of
SQL Server requires NAMED PIPES network support, so you must install a version of LAN
Manager (.e.g., 3Com 3+0pen, the Ungermann-Bass version, IBM LAN Server), or Novell's
NetWare Requestor for OS/2.

Database en&e features

SQL Server has limited distributed update support. It comes with function calls for
coordinating updates across multiple databases, but it is the programmer's
responsibility to issue the correct function calls. SQL Server supports remote
procedure calls that allow transactions to execute procedures on other SQL Servers.

S;ybase has an Open Server product that allows developers to build gateways between
Sybase and other DBMS' such as Rdb. It also has built and offers a gateway to DB2.

It also has disk mirroring and fault tolerant features. Mirroring allows an
organization to keep two exact copies of a database (usually on two separate disks).
If one disk fails, then Sybase will automatically use the other disk without
intempting operations. Mirroring is crucial to many OLTP applications that
require fault tolerant operation. In order to engage mirroring, the database
administrator issues a new DISK MIRROR command. Disk mirroring can be executed even
if Sybase is in operation, so that it will not interfere with twenty-four hour
processing.

SQL Saver supports referential integrity and other business rules with triggers.
Triggers are small SQL program, written in SQL Server's Transact-SQL language, that
are stored in the DBMS catalog. Each trigger is associated with a particular table
and a SQL update function (e.g., update, delete, and insert). They are automatically
executed whenever a transaction updates the table. You can write triggers to enforce
any database validation rule, including referential integrity. (OS/2EE's
definition of referential integrity by DDL statement stored in database tables is
superior).

Since they are stored in the catalog and automatically executed, triggers promote
consistent integrity constraints across all transactions. The triggers are easy to
maintain because they are stored in only one place - the DBMS catalag. Rules are
enforced for any application that accesses the database, such as spreadsheet
programs.

SQL Server also stores rules in its catalog. Rules apply to columns, and you use them
to specify user-defined data types and range checks.

SQL Server's stored procedures are similar to triggers. They are Transact-SQL
programs that are stored in the DBMS catalog. Any applications (e.g., databases and
spreadsheets) can call a stored procedure. Instead of executing one SQL command at a

DISTRIBUTED DBMS: AN EVALUATION c by George Schussel

time, stored procedures execute several commands simultaneously - without any fmher
interaction with the application.

This saves a considerable amount of network overhead and can boost performance by 40%
or more. Since Transact-SQL is a Eull language, developers can write complete
procedures with branch and control logic, assignment operators, and error checking
capabilities. Oracle's OTEX and SQLBase's chained-SQL do not have these features.

Server performance

SQL Server implements a multi-threaded, single server architecture. This type of
architecture is also used by Gupta's SQLBase. Multi-threaded servers perform most of
their work and scheduling without interacting with the operating system. Instead of
creating user processes, multi-threaded servers create a thread for each new user.
Threads are more efficient than processes, and they use less memory and CPU resources.
In contrast, Oracle and XDB use a process/user architecture.

Its multi-threaded architecture enables SQL Server to efficiently service a large
number of users. It can service 40 users simultaneously on a 10 MB 33MHz Compaq with
only minor degradation in performance. However, SQL Server's single server
architecture does not allow it to take advantage of multiple processors. However,
Sybase says it is working on a "virtual server" architecture that will create multiple
sewers on a single machine.

Sybase uses page level locking (as compared with row level locking in Oracle). This
should hinder OLTP performance, but at a practical level, doesn't seem to be an issue.

SQL Server uses a clustered index, which means that the table is kept in the same
physical order and page as the key index. This improves performance by reducing head
movement in database operations which frequently access data in index order,
especially if you write a lot of reports in index order.

Most other DBMS' must use indexes to sequentially retrieve a range of records or a
whole table. This means that the transaction must perform at least one index I/O
operation and one data I/O operation for each record. Often, DBMS' must perform
more. Clustering reduces the number of I/O operations by eliminating the index f/O
operations and clustering data in the same database page. For many customers, this
feature has made an important performance difference in the success of an OLTP
application.

Cursors

A unique weakness of SQL Server is its poor support for the concept of cursors. It
does not support the standard IBM SAA application "cursor" programming interface. A
cursor stores the results of a SQL query and allows a program to move forward through
the data one record at a time. Sometimes, as in the case of SQLBase, a programmer can
move backward within a cursor. Without a cursor, it's harder to program transactions
that must browse through data. It is hard to think of another SQL DBMS product that
doesn't support cursors. Support for cursors will be part of Release 5, which is
expected sometime in 1991.

DISTRIBUTED DBMS: AN EVALUATION c by George Schussel

Tools

SQL Server's APT-Workbench toolkit has been considered weaker than many competitors
and until summer '90 was not available at all under 0S/2. Conversations with users
of the latest versions of APT indicate much improved levels of satisfaction at this
time, Other popular products that can be used to develop Sybase applications are
DATAEASE, PARADOX, SQLWINDOWS and ADVANCED REVELATION.

Text: and Image Data types

SQL Server Version 4.0, and later (available on UNIX platforms) supports TEXT and
IMAGE data types. IMAGE data types are binary data. TEXT data types are printable
character strings. IMAGE data types are binary data. Strings can be as long as two
gigabytes. A table can contain up to 250 TEXT or IMAGE columns. These are defined
in the CREATE TABLE statement using the TEXT or IMAGE data type keywords.

TEXT and IMAGE data types are stored as linked lists of pages. A pointer in the data
row stores the value of the first page of the linked list. This means that there is
an overhead of at least one additional I/O for large data types.

Some SQL commands can be used with TEXT and IMAGE data. INSERT, UPDATE, SELECT and
DELETE can all be used, but operators such as "=", ">", "<", IS NULL and IS NOT NULL
are not legal for long data type fields.

Remote Procedure Calls

Remote procedure calls (RPC) allow an application on one Sybase server (or client)
to execute a stored procedure on another Sybase (or open) server. Stored
procedures, a set of SQL commands created using Sybase's TRANSACT-SQL language,
have been discussed above. Stored procedures enhance performance, since all of the
commands can be executed with one call from the application program.

There is no support for a 2-phase commit with an RPC, since remote procedures are not
within the scope of a Sybase transaction. This limits the usefulness of RPC's
since if there's a failure in a trigger processing as part of an RPC, there is no
notice returned to the originator of a failure.

Conclusion

Sybase is sitting in the best position of this industry. The company's growth rate
is aggressive but manageable. The company has exhibited excellent technical and
marketing management. The product has the top reputation. Sybase's principal
business partners are Microsoft and Lotus. The June 1990 Software Digest, in the
category of SQL Servers for OS/2, awards Sybase 3 stars, Oracle Server 2 stars, and
both OS/2EE Data Manager and Gupta 1 star.

DISTRIBUTED DBMS: AN EVALUATION c by George Schussel

CHAPTER 6 - ORACLE

Introduction

Oracle Corp., is a leading provider of UNIX DBMS'. An Oracle database is portable
to many different platforms as long as you maintain the version of Oracle across
all platforms. (At any given point in time you will not find the same version of
Oracle on all its platforms.)

Oracle's primary advantage is multi-platform portability and networking. What
other database software lets you run the same application on 50 different computer
systems and share data between them to boot? This is Oracle's strongest selling
point in large corporations.

Oracle's portability advantage is less than before because the other UNIX RDBMS'
also have developed portability. However, Oracle does support Macintosh. Among
its competitors, only Sybase has a similar capability. Finally, Oracle has put
much effort into expanding its product and services and now it gets a major part of
its revenue from selling add-on products and consulting services.

The time lag from when a new Oracle product is introduced for one environment and
then is ported to another can be two years. In the past, products have appeared
first for VAX/VMS, then migrated to UNIX and MS-DOS. It took the better part of a
year for SQL*REPORT WRITER to make the transition to MS-DOS after being available on
the VAX. This dilemma applies to any multi-platform software, but because Oracle
runs on so many different computer systems, it can become a problem for users with
heterogeneous environments.

The Oracle Enlrine

Oracle multi-threads in its handling of 11'0, but uses a process-per-server
architecture for other functions. For example, in the OS/2 world Oracle assigns
each log-on an OS/2 process, at 300K each on the server, compared to 46K required by
SQL Server's single-process threads. The up side of this architecture is that,
within limits, it can use multiple processors. The downside is that it consumes
memory resources and incurs extra CPU overhead as compared with a multi-threaded
DBMS kernel.

Oracle 6.0, the newest version and the one that runs under OS/2, corrects many of the
deficiencies of prior versions. It includes a new row-level locking feature that
overcomes a major deficiency of previous Oracle versions that locked entire tables
on updates. It is rumored, however, that it is this row level locking feature that
prevents Oracle from running across VAX Clusters,

Version 6.0 also includes asynchronous I/O capabilities and improved data
buffering.

There is an Oracle for OS/2 which runs on a number of different networks, including
Novell's IPX/SPX, NetBIOS, and TCP/IP. SQL*Connect allows users to connect to
remote Oracle databases. Oracle's distributed database technology enables users

15 DISTRIBUTED DBMS: AN EVALUATION c by George Schussel

to query local and remote Oracle databases within a single queiy. However, Oracle
does not optimize distributed queries or support distributed updates. Oracle also
has gateways to non-oracle DBMS' such as DB2, but in practice these gateways have had
stability and performance problems.

Oracle supports a "row-level multiversioning" mode that is similar to SQLBase's
read consistency or Interbase's multi-generational approach (similar in functional
goal, different in implementation, since prior images are reconstructed from the
journal). Read locks are not used; instead, read only queries see a consistent set
of data based on the time stamp of the query's start. Updates never block read only
queries. This, together with its row-level locking for tables and indexes, makes
Oracle suitable for mixed reporting and transaction environments. This Oracle
multiversion capability is not available, however, in distributed environments.

Oracle queries are sensitive to the SQL syntax used by the programmer. This means
that an SQL command behaves differently depending on the order of the table names in
the SQL WHERE clause. An unoptimized query can take several orders of magnitude
longer to process; this increases as the query draws upon more relationships and
more tables. This, of course, violates the whole premise of the relational model.
Instead of using a cost-based algorithm to determine the best way to JOIN tables,
Oracle puts the burden on the programmer. Skilled programmers may be able to find
the right syntax, but if table sizes change, then the program should be modified.
The situation can get worse when outside 4GLrs or spreadsheets are used to access
Oracle since then the generated syntax may be completely out of programmer control.

Oracle 6.0 has implemented a "poor man's stored procedures", OTEX, which is similar
to SQLBase's chained-SQL. OTEX provides a performance boost in benchmarks like
TP1, but is limited in practical value because it has no support for branch and
control logic or any programming logic. Like chained SQL, OTEX can only return the
error code of the last SQL command executed.

Tuining of the Oracle server must be done very carefully and only after one is
familiar with how Oracle will respond to your settings. There are literally
hundreds of different potential adjustments that can be made to Oracle that will
affect its performance - the configuration, the initialization, program controls,
rollback procedures, etc. Some of the tunable items are completely undocumented.
A server that is fme-tuned for 24 stations will waste resources when 12 stations are
running, and a server tuned to make the most of resources for 12 stations could
easily malfunction if you attempt to run it with 13 or more. Worst of all, if you do
happen to exceed the available memory of setting a parameter too high, no error
message is given; Oracle simple behaves erratically.

In the hands of an experienced DBA, Oracle can be fast, principally because of an
ability to take advantage of a large disk cache. However, the product is
notorious for poorly managing free space on disk and stands in stark contrast to
Sybase which has a fine reputation for this feature.

Oracle tools

SQL*Forms is Oracle's application development tool set. SQL*Forms doesn't support

16 DISTRIBUTED DBMS: AN EVALUATION c by George Schussel

"IF-THEN-ELSE" or branching types of program logic. Oracle has promised
enhancements in the form of Oracle's PL/SQL.

SQL*Foms is a good tool for its mid 80s heritage. By today's newest standards,
however, it is not considered state of the art. There are no windows or part-screen
forms; forms must be full-screen size; and only one form can be opened in data entry
mode at a time. There is a lack of capability to cut and paste between forms.

SQL*Foms is more useful for forms based applications like data entry, than for
general purpose transaction processing. You can't dynamically change properties of
fields (i.e., make one field display only based on the value in another field), and you
can't "parameterize" table names in SQL triggers. Finally, though it's possible to
call SQL*Plus from SQL*Forms, it's hard to pass parameters, between different Oracle
front-end tools.

These limitations point to the fact that there's no full-function fourth-generation
language (4GL) in Oracle. This means that any transaction processing application
that's beyond the scope of SQL*Plus (i.e. one with any conditional logic or error
checking) and any forms application beyond SQL*Forms must be done in a programming
language with embedded SQL. Although Oracle's embedded SQL precompilers are good,
programming in a traditional language usually requires more time and effort than in a
4GL.

The limitations mentioned above mean that there is a need for outside developer tools.
In spite of the vivid image of Oracle shooting down dBASE, Oracle isn't a dBASE
competitor, but would rather benefit from cooperation with tools like dBASE. It's
hard to understand, then, why Oracle spent money to publicly attack a product it
couldn't replace.

Using any outside PC-specific language or front end unfortunately eliminates a
principal Oracle advantage, portability. This portability is only possible if
development is done exclusively with Oracle's tools. An all Oracle application will
run virtually unchanged on more than 80 different computers and operating systems,
including workstations, minis, and mainframes. Data on Oracle Server is also
portable among XENIX, OS/2, VAX, and mainframe platforms.

For the PC world, Oracle Server has the reputation of being the hardest product to
install and use. Learning to tune it is diffkult, especially because of its lack of
automated features, such as optirnizers and dynamic allocation of RAM and by the need to
do tuning off-line. By PC standards, Oracle is complex and demanding. It could be
helped in this area by flawless documentation, but unfortunately such is not
available.

Conclusion

Oracle's strengths are its portability and large base of application support. At
1990 sales of about $1 billion it is the largest (by far) DBMS software company.
Sometimes, when its products are compared negatively with competitors such as Sybase
it's important to remember that Sybase has less than 10% of Oracle's sales!

17 DISTRIBUTED DBMS: AN EVALUATION c by George Schussel

Technologically, it lags behind its competitors, and it is a complex relational DBMS
that is difficult to administer. The product consists of new features layered on an
old architecture. It needs stored procedures and triggers. It should also
implement either clustered indexes or hashed tables for performance. The
development tools need upgrades.

The complexity of the product and the high levels of expertise needed to correctly mn
it reminds one of IMS in the 1970's. There is one important difference, however - IMS
was much more thoroughly documented than Oracle.

Speaking of documentation, none of the products reviewed in this report get very high
marks compared to the type of documentation IBM provides with DB2. Based on a scale of
10 (best), the following was a consensus opinion of a few analysts:

Oracle 4
Sybase 5.5
Interbase 4
DB2 8.5

Oracle is the largest supplier of UNIX RDBMS'. Whatever technical advantage Oracle
once enjoyed has vanished. The latest release of Oracle 6.0 is missing features such
as stored procedures, triggers, BLOB data types, user defined data types and
functions, disk mirroring, clustered indexes, a multi-threaded database
architecture, cost-based optimization for distributed and nondistributed queries,
and distributed updates.

In response to these deficiencies, Oracle has announced that Oracle 7.0 will include
most of these capabilities when it ships. At this point in time and given Oracle's
track record with previous promises a release 7.0 date for any given platform is
unknown. Oracle version 6.0 was released two years late; Oracle's PL/SQL and SQL
Forms 3.0 are both more than two years late. It wouldn't be unreasonable to expect the
UNIX versions to ship in the late/91, early/92 time frame.

A potential user must also consider just how much effort and time it takes to optimize
queries using Oracle's trial and error method. To tune Oracle, you must shut down and
restart the server with every parameter change.

The company has severe cash flow problems and is negotiating an extended credit line of
$250,000,000! From personal experience I know that Oracle's internal expense
controls have been poor. There is a real potential that the company may not be able to
change its free spending ways in time to avoid insolvency.

DECfs promotions for Rdb are now taking a serious chunk out of Oracle's sales on VAX.
Rdb has become a good product. It has triggers, referential integrity and
distributed updates. The run time version is free. The developer's version is
cheaper than Oracle. Consultants are advising that frequently Oracle is no longer
being invited into the final round of DBMS procurements.

It is reasonable to consider the analogies between Oracle and Cullinet a few years ago.
The principal similarity is that both were considered market leaders and Wall Street
darlings. The major difference, however, is that IDMS was a strategic product at most

18 DISTRIBUTED DBMS: AN EVALUATION c by George Schussel

of its 2,000+ customer sites. IDMS held and still holds a tremendous amount of
strategic information. Oracle, on the other hand, is not the principal DBMS at large
companies and relatively speaking holds far less information. Translation - that
means that it is much more easily replaceable than IDMS. --There may be more
analogies between the two companies in the future. Stay tuned.

DISTRIBUTED DBMS: AN EVALUATION c by George Schussel

CHAPTER 7 - INTERBASE

Analysts who have evaluated the Interbase technology seem to be impressed - especially
given the size of the organization. While not up to Ingres' standards, the product is
considered a strong candidate for second place in the technology race (with Sybase).

Engine

Interbase's database engine technology is oriented toward distributed database and
large object management. The engine is optimized for handling random, unpredictable
queries, and is especially designed for fast and high quality performance in a
decision support role. The engine has been designed for good performance on
workstation platforms. Cognos resells the Interbase engine, but without benefit to
Interbase (except financially) because Cognos doesn't advertise the source of their
technology.

Interbase offers the user a choice of a full multithreaded, central server approach
(like Sybase), or a multiprocess approach (like Oracle).

While Interbase supports a 2-phase commit for distributed update, it doesn't have a
cost optimized distributed JOIN (neither does Sybase). Neither Interbase nor Sybase
have a distributed data dictionary. Interbase's capabilities in the area of
heterogeneous foreign DBMS gateways is significantly less than what is available in
other products such as Ingres, Focus or Sybase.

Interbase doesn't support a clustered index "database speed-up" technology like
Sybase, but has a comparable or superior alternative technology known as "bit-mapf'
technology. This approach uses bit vectors to represent whether a data field has or
hasn't the values searched. Boolean operations are performed on the bit vector - a very
fast process. I have run across this technology before and have found it to
generally well regarded.

Interbase doesn't support the distributed DBMS requirements for fragmentation or data
replicates. Neither Oracle or Sybase supports this functionality.

Interbase has direct support for SMP (Symmetric MultiProcessing) and can take
advantage of several parallel processors under the same skin (with an appropriate
operating system). These processors can be tightly or loosely coupled. Interbase
can, then take advantage of VAX Clusters, which neither Sybase or Oracle can use to
full advantage.

Disk mirroring is supported through the process called "shadowing". This mirroring
capability is also supported for CPU's and both of these technologies are useful in
situations requiring non stop operation.

A unique capability is Interbase's support for application specific functions. This
capability allows a user to easily extend the range of database commands by adding new
ftmctions coded in C to the DBMS kernel. This facility is helpful in the manipulation
of BLOB data.

20 DISTRIBUTED DBMS: law EVALUATION 2 by George Schussel

Event Alerters

Interbase has added event alerters with Version 3.0. An event alerter is a signal
sent by the database to waiting programs to indicate that a database change has been
committed. Event alerters work remotely, even across multi--vendor networks. No
other company has event alerters at this time. I mentioned to Jim Starkey that it
would seem to be a simple functional addition to add event alerters to a system that
supported the concept of triggers. He pointed out that implementation of the
technology is made difficult by the need to support an asynchronous, heterogeneous
environment.

Event alerters are a type of technology comparable to stored procedures and triggers,
both of which Interbase supports. Interbase has no limit on the cascades that can
descend from a trigger. In this whole functional area the Interbase technology is
equal or superior to that offered by Sybase.

Event alerters offer the following benefits:

* No network traffic or CPU cycles are consumed by the waiting program.

* Notification is effectively instantaneous, not dependent on some polling interval.

* Event notification works remotely, even across differing platforms. The
notification mechanism is managed by Interbase.

* Unlike a trigger, an event alerter can affect programs outside the database.

BLOB data types

Interbase includes a BLOB data type (binary large object bin). A BLOB has no size
limit and can include unstructured non-relational types of data such as text, images,
graphics, and digitized voice. Interbase handles a BLOB as a single field in a
record, like a name, date, or floating point number. It can then be governed by
concurrency and transaction control.

The ability to create "database macros" which can be executed by the database engine is
supported within Interbase (BL,OB filters). A BLOB filter is a centrally stored, user
written procedure that tells the database system how to translate BLOB data to another
fonmat. Because they are stored in one place and managed by the database, BLOB
filters are simpler to create and maintain than similar code in an application. BLOB
filters are an area in which Interbase is ahead of its competition.

Interbase has array support for arrays of up to 16 dimensions in the database. Arrays
are stored as a single field in a record, so retrieval is expedited. Array elements
may be any Interbase data type except BLOBS and other arrays. h a y s are widely used
in scientific processing and are very expensive to normalize for a relational DBMS.
Normalization of an array normally means creating much added redundant data to
generate separate records for information that is really only different at the field
level.

2 1 DISTRIBUTED DBMS: AN EVALUATION c by George Schussel

Multi-generational system

Jim Starkey was first exposed to the idea of maintaining multiple generations of
database records by reviewing work done at Prime Computer. Subsequently, he pursued
these ideas further at DEC and finally founded Interbase as a DBMS company which to
create and market software embodying this idea. As implemented at Interbase, this
technology offers good functionality for concurrency control and the ability to
maintain consistent database views for multiple readers.

When a database management systems uses locks to maintain consistency, its
concurrency control can be a two-edged sword. As the system protects transactions
from conflicts, it causes them to wait for each other. Such an approach leads to
deadlocks that force transaction rollback.

Interbase maintains data consistency through the use of "multi-generational"
records. When a transaction modifies or erases a record, Interbase creates a new
record version instead of overwriting the old record. In most cases, the old record
version contains a compact record of the changes.

The versions are chained together to form a multi-generational record. When a
transaction starts, it reads the most current version. Thus, a read transaction is
never blocked. For example, when a report program reports on the state of the
database, it ignores changes that were made after it started, so other updates proceed
unhindered. The reader, then, always gets a consistent view of the data base
correlating to start time of the transaction. Most other DBMS products provide a view
of the current state of the database.

This multi-generation approach obviates the need for Interbase to implement
"snapshots" since the base engine's technology offers a functional superior
alternative to what benefit shapshots provide. Neither Sybase or Oracle have working
implementations of snapshots.

If there has been an update in a portion of the database that happened after another
writer's start time (a collision), the DBMS must roll back anything done by the second
writer and give it a new time stamp that allows it to have a consistent database view.
Interbase claims that this process is actually superior (performance) to other types
of locking schemes. It was outside of the scope of this study to verify this claim,
but I think it represents a key issue.

Interbase management confirmed that there is an overhead attached to processing
required by this multi-generational approach that must continually be paid.
Interbase doesn't run TP1 benchmarks and it was the estimate of both Richard
Finkelstein and Herb Edelstein (both of whom were consulted as part of this study) that
Interbase would not do well on these types of benchmarks. This is a problem that
Interbase management must address if there are plans to port to the OS/2 environment.
It's a problem because the marketing image of a fast TPI number is essential for
competing in this market segment (or for that matter in the commercial end of the UNIX
market).

DISTRIBUTED DBMS: AN EVALUATION c by George Schussel

Interbase's multi-generational approach also deals with other database management
issues:

* All DBMS systems must maintain a copy of the previous state of a record in case the
transaction aborts or rolls back. The traditional approach involves a
"before image" journal, a separate file into which the system copies the old
version before overwriting the record in the database.

* However, Interbase uses the database itself as a before image journal through its
multi-generational records. Interbase management claims an advantage for
this approach because 1) multi-generational records require less I/O than
separate before image journals, 2) no separate recovery program is needed,
and 3) recovery is instantaneous as soon as the machine recovers from a crash,
with the database available for use.

Interbase tools

A number of VAX tools that are DSRI compatible operate with Interbase (eg Smartstar,
Powerhouse). I didn't pursue this subject in great detail as part of this study, as I
relied on Interbase management's discussion of their capabilities. It was their
assertion that this is an area of weakness as compared with either Oracle or Sybase.
The company has relied (not unreasonably) on compatibility with DEC's DSRX
specification to take advantage of the fact that any tool running on Rdb will run on
Interbase. This type of tool support, however, doesn't help in heterogeneous
environments, an area of Interbase engine excellence. According to Starkey, it is
the paucity of multiplatfom tools that has been the principal reason for the
company's decision to shy away from commercial markets so far. The next Interbase
release version will concentrate on improving Interbase's own toolset.

The combination of a dBASE front end environment (with its millions of users) and a
powerful, distributed server back end from Ashton Tate would certainly spike market
interest in client server style computing. I am convinced that client server
database oriented approaches are the most promising way of attacking cooperative
processing.

Conclusion

In a review of conversations that were held with aerospace/engineering Interbase
customers I determined that the product is well liked and is considered to perform well
in distributed environments. The development tools were liked and support from the
company was fair to good.

The company's management stated that their marketing focus was toward 5 vertical
markets:

Manufacturing
Finance
Engineering/scientific
Network management

DISTRIBUTED DBMS: AN EVALUATION c by George Schussel

Aerospace

As management analyzes the decision of moving Interbase toward becoming a player in
the general commercial client/server business, it should not underestimate the amount
of effort to successfully accomplish this move. I think that this effort is likely to
be more a management than a technical challenge. Interbase has no visibility in
commercial client/server markets. Interbase's management, especially marketing, is
likely to have to change significantly for such a metamorphasis to work.

DISTRIBUTED DBMS: AN EVALUATION c by George Schussel

CHAPTER 8 - QUICK REVIEW OF OTHER COMPANIES

Gupta Technologies
SQLBase
1020 Marsh Road
Menlo Park, CA 94025
415-321-9500

SQLBase is missing some advanced relational capabilities like referential integrity,
stored procedures and triggers. It is capable of storing and executing a precompiled
set of SQL commands without branching, error checking, or program control. This is
called chained SQL - a kind of poor man's stored procedures.

SQL Windows is an excellent programmers tool for developing sophisticated windows
based applications. It is not too easy to learn but it very capable. Gupta has
developed or is developing links between SQL Windows and other DBMS' including OS/2EE,
Oracle and Sybase.

There is a DOS version of SQLBase. All of Gupta's products will appeal to the
developers who are from the PC world, since they carry a PC, rather than a
minicomputer flavor.

A big problem with SQLBase is poor and missing documentation. Gupta's software has
had more quality problems than is normally considered acceptable in mainframe
environments.

Gupta is rapidly growing and appears financially successful. Novell just purchased
20% of the company. Gupta has about the same number of employees as Interbase.

Ingres Corporation
INGRES
1080 Marina Village Pkwy
Alameda, CA 94501
415-769- 1400

Ingres comes with a multi-threaded, multi-server architecture. Ingres has the best
cost-based software optimizer technology available today. Its optimizer stores
database statistics and usage histograms,

Ingres has a query flattening algorithm that levels out different SQL syntaxes with
the same semantics to make sure that they are interpreted identically and run with an
optimal path. In this way, Ingres is opposite from Oracle.

Ingres comes with a complete and high quality application development tool set called
Application by Forms.

2 5 DISTRIBUTED DBMS: AN EVALUATION c by George Schussel

Ingres at this time supports multi-site updating Prith a programmer controlled 2-phase
commit protocol.

Ingres' "Knowledge Management Extension" (KME) allows users to store triggers in the
DBMS catalog. This can be used for protecting domain integrity or for centrally
implementing referential integrity and business rules.

Most independent analysts agree that Ingres technology is superior to all of its
competitors. In addition, most analysts like the company since it has a generally
good reputation of not exaggerating or lying about capabilities.

Unfortunately, Ingres has been bedeviled by less than professional top management.
The marketing and general management capabilities of the company have been suspect.
Ingres' recent acquisition by ASK Computer Systems is not a good sign; I know of no
cases where an application vendor has successfully acquired a DBMS and tools
company.

Progress Software Corporation
PROGRESS
5 Oak Park
Bedford, MA 01730
617-275-4500

Progress has been well accepted in the VAR and small organization developer community.
It has a complete DBMS capability and 4GL. All applications in Progress must be
written in its own 4GL language since it does not support an API for languages like C
or COBOL. A DOS version is available, in addition to versions for dozens of UNIX
platforms and the VAX.

Progress Release 5 has a multi-threaded, multi-server architecture similar to Ingres.

The heart of Progress is its 4GL, if you like the 4GL product, you'll like Progress.
Since the package is sold with 4GL and database bundled it is very competitively priced
compared to its competitors. Based on employee count, the company appears to be twice
the size of Interbase.

XDB Software
XDB
7309 Baltimore Avenue
College Park, MD 20740
301-779-5486

XDB's principal importance in the market place is as a PC development platform for
IBM's mainframe DB2, DBMS with which it is highly compatible. XDB not only duplicates
DB2 SQL syntax, it duplicates the messages and returderror codes. In addition, XDB
displays data in the same way than DB2 does and it maintains DB2 SQL restrictions. The
combination of Micro Focus' COBOL with XDB makes an ideal PC development platform for

2 6 DISTRIBUTED DBMS: AN EVALUATION c by George Schussel

mainframe applications.

Informix Software, Inc.
Informix
4100 Bohannon Drive
Menlo Park, CA 94025
415-322-4100

Informix is one of the most popular DBMS' for UNIX environment. Its price and low
hardware requirements have made it very popular among VARs. Informix-4GL is a good
development tool with good performance. Informix has been maintaining its database
technologies successfully with new releases that include disk mirroring, on-line
database backups and parallel I/O operations. In addition, Informix supports BLOB
data types. Informix's distributed system has a cost-based optimizer which takes
into account data location, and both communication and hardware cost.

END

DISTRIBUTED DBMS: AN EVALUATION c by George Schussel

