Technology Forum

BY GEORGE SCHUSSEL

DATABASE
REPLICATION:
WATCH THE DATA FLY

Individual workgroups can now have their own
replicated databases. For IT, this means never
having to say “sorry” for network delays

Mark Fisher

80 Client/Server Today—October 1994

1 his is the first of a two-part series on database replication. This article focuses on
the overall importance and benefits of replication and provides an introduction to
the two forms of replication services. Next month, we will examine in detail the dif-
ferences between these two forms of replication: data warehousing and high-end
transaction-fprrocessing class replication servers.

he business paradigm of the
nineties seeks to place more deci-
sion-making authority in the
hands of those closest to cus-
tomers. To do this, corporations
are reorganizing along their lines
of business rather than aligning
along the functions of business.
For IT, which many corporations
view as one of the critical success
factors in business-process reengi-
neering, this has meant a series of
dramatic fundamental changes.
Hand in hand with the new
business paradigm has come a
strategic shift to distibute comput-
er systems closer to the lines of
business. Such change has culmi-
nated in a new client/server IT
paradigm that for many IT deci-
sion makers has been a colossal,
growing headache encompassing
issues of performance, reliability,
security, and cost. And there’s no
letup in
sight.

As distributed operational
applications become more widely
used across large enterprises, pres-
sure will continue to increase to
maintain local copies of key cor-
porate data in order to provide
better response time for local
queries, As a result, corporate
databases—or at least the data
residing in those databases—will
have to migrate out from the
secure and highly optimized sanc-
tuary of the glass house into the
distributed and frequently chaotic
world of open systems.

Replication, or the copying of
data in databases to multiple loca-
tions to support distributed appli-
cations, is an important new tool
for businesses in building compet-
itive service advantages. Replica-
tion provides users with their own
local copies of data. These local,
updatable copies can support
increased
local-

ized processing, reduce network
traffic, and, in some cases, they
can provide distributed, non-stop
processing.

While replication or data copy-
ing can clearly provide users with
much quicker access to local data,
the challenge for IT is to provide
these local copies of corporate
data in a manner that maintains
the same data integrity and opera-
tional management that is avail-
able with a monolithic, central
data repository scheme. For exam-
ple, if the same inventory records
exist on two different systems in
two different locations—say, New
York and Chicago—the system
needs to ensure that the same
product isn’t sold to two separate
customers.

Fortunately, there are new repli-
cator facilities from several ven-
dors that are beginning to make
just this technology far more

useful and more practi-
cal than it has

Client/Server Today—October 1994 81

Technology Forum

been in the past. A true distributed database manage-
ment system (DBMS), as defined by most industry con-
sultants, requires the system to support updates at any
node on the network.

The concepts behind such technology were pioneered
during the late 1970s in the IBM research project R*Star.
IBM’s subsequent delivery of distributed DBMS products
has been part of a 10-year evolving technology known as
Distributed Relational Data Architecture (DRDA).

Breaking the 2-phase bottleneck

The first well-publicized distributed DBMS product,
announced in 1987, was INGRES/Star. (INGRES was
recently acquired by Computer Associates and renamed
CA-INGRES). Largely as a marketing ploy, Oracle also
announced distributed DBMS capabilities in 1987; how-
ever, the first Oracle product to reasonably support dis-
tributed database processing is Oracle 7.

The key technology employed to maintain data
coherency and integrity in a distributed DBMS is the 2-

The 10 ingredients

Expert Chris Date has formulated 10 rules
that need to be In place for a distributed DBMS.

Rule #1. Local data is managed independently of other
sites.

Rule #2. Users don't need to know the location or a path
to the data.

Rule #3. No DBMS site is more important than another.
Rule #4. No planned activity should require a shutdown.

Rule #5. A table that has been fragmented will appear as
~ a single table to users.

"-'_-: Rule #6. Redundant data is managed, accessed, and
- updated transparently.

Rule #7. Distributed queries are optimized over i
[the entire network.

Rule #8. Transactions that update multiple sites run with
concurrency control and recovery control in case of
failure,

Rule #9. There is independence from the hardware,
operating system, network, and DBMS.

Rule #10. There is distributed access to the
data dictionary.

Source: Chris Date

82 Client/Server Today— October 1994

The copy continuum

Different approaches to copying are based on the degree of

data concurrency required for all database copies.
phase commit. In a distributed DBMS, an update trans-
action to a database by one client may appear to that
client as a simple atomic transaction, while in reality it
may involve a host of systems, place a plethora of SQL
message packets on the network, and—while transpar-
ent to the originating client— the process may be far
from transparent to other clients on the network.

A typical database update begins with reading the
“before” image of the data to be modified and continues
with establishing locks on the data, changing the data,
logging the change, and releasing the locks. This sce-
nario becomes exponentially more difficult when a data-
base is fragmented and distributed across several servers.

Before a server in a distributed database scheme can
update its own local data, it must initiate a master
process—the two-phase commit— with all of the other
servers on the network that also maintain that data. A 2-
phase commit begins with a synchronized locking of the
data on all of the servers involved. Each server then
updates the information, sends a confirmation message
back to the master process, and waits for instructions to
commit the transaction from the master process. Only
after all of the database servers confirm the update, will
the master process commit the transaction and release
access to the data once again on the network.

All modern distributed DBMS products offer methods
for implementing a 2-phase commit. Nonetheless, these
procedures are proprietary for each distributed DBMS.
There is an XA standard from X/Open which has been
implemented in several transaction monitors, but it
hasn’t been implemented as part of any vendor’s DBMS
technology.

As a result, the degree of automation support is also
different from vendor to vendor. IBM, Oracle, and CA-
INGRES all offer a high level of transparency to imple-
menting a 2-phase commit. On the other hand, the
Sybase replicator takes a more programming-oriented
approach that requires the user to handle some of the
handshaking issues, such as having to code DBLib or
RPC calls into the application.

Nonetheless, when a synchronized 2-phase commit is
combined with data locking, logging and recovery, the

Technology Forum

necessary ingredients for building a
distributed database with absolute
data synchronization are in place.
Unfortunately, this approach to
distributed computing is intoler-

T

ant to failure: Any failure in the net-
work or on any of the local participating:
databases will cause the entire transaction (o

fail. AL50 or more nodes, a tightly coupled 2-phase
commit process for updating is probably impractical.

Because of this intolerance, distributed DBMS is not
typically used to create and manage replicates. The dis-
tributed DBMS is more useful where data integrity across
multiple sites must be guaranteed. In these environ-
ments, the real failure would be to permit updating some
nodes in the presence of outages of others.

Replication to the rescue

Replication is the best current solution for many appli-
cations because it can be cheaper and more reliable than
the alternative of a distributed DBMS engine. A distrib-
uted DBMS uses a 2-phase commit to couple together all
updates to all locations participating in an update into
one very secure transaction. Replication uncouples a
local transaction from the process of updating any dis-
tributed copies of the data and relies instead on a behind-
the-scene process to coordinate all of the multiple
updates necessary to synchronize all of the local data-
bases around the network.

Of the many different approaches to replication, each
is well suited to solving certain classes of problems. The
different types of technologies, in fact, span a scale of
approaches. On one side of the copy continuum are
approaches that are well suited for supporting decision
making, browsing, and research on LAN- based PCs or
other platforms. On the other side are classes of tech-
nologies that are appropriate for supporting operational
systems whose principal role is allowing real-time trans-
action processing in widely distributed locations.

The type of replication strategy that is most appropri-
ate depends on the problem or application. Decision-
support applications often are well supported by tech-
nologies that employ simple table copying or snapshot
technologies. These technologies can support multiple
schemas or data views and are normally set up so that the
copies are read-only. These decision-support replication
(DSS-R) solutions are often referred to as data ware-
housing.

At the opposite end of the technology spectrum from
DSSR are replication approaches that are designed to
replace and even improve on distributed on-line or dis-
tributed DBMS technologies. These approaches offer
near real-time updating against copies of data that may
be located in many locations.

As with all replication schemes, transaction processing
replication (TP-R) uncouples the synchronous distribu-

v,
(1]

tion of data copies from the originating

application. In a TP-R environment, data-
base servers update their local database for
client applications and then register that

change with a replication server. The replica-
tion server then asynchronously propagates
those changes to other database locations. This
type of database replication is appropriate for
many production systems and normally only imposes a
requirement to maintain a single global database
schema.

Between the two extremes of DSS-R and TP-R there are
many possibilities of combining features and functions
for a customized distributed solution. When evaluating
replication options, IT decision makers need to take into
account requirements for currency, local updates, data
enhancement, and history maintenance, among other
considerations.

Warehouse shopping

Data warehousing applications are the least demand-
ing on replication services. These applications usually are
characterized by a need for data copies that are consis-
tent for a single point in time that often is not the current
time. Those who use decision-support systems usually
need a historical series of data values over a period of
time. In period accounting or trend analysis, a stable data
source is essential, and stability often is defined at

2-phase commit in a
distributed database

it

In a distributed database, all database nodes are updated
synchronously, and a failure at any one node will force a roliback
of the transaction at all nodes.

Client/Server Today— October 1994 885

Technology Forum

monthly or even quarterly intervals.

With close ties between decision-
support systems and data ware-
house applications, GUI forms of
presentation are becoming a dis-
tinct requirement. As a result, the
warehouse data often can’t be encoded.
Instead, it must be presented to the user in a
form that’s comfortable and familiar. To ensure the
usefulness of the data maintained in a warehouse copy,
the DBMS must often perform derivation, aggregation,
and transformation functions on the raw data before
copying it into the data warehouse.

Often data warehouse applications are read-only.
Updates, as they occur, are performed only on the source
production system database from which the warehouse
copy was created. It is possible, however, to have an envi-
ronment where updates can be processed against both
production and warehouse databases. This is done by
keeping the two in a synchronous state with a 2-phase
commit update against both source and target data. Nor-
mally, this is not a good idea because of specialized tun-
ing for the read-only copy that allows it to perform better
in decision support. Transaction- processing updates will
likely interfere with its job efficiency.

IBM is probably the leader in offering the technology
needed to support data warehousing. Digital Equipment

Database replication in a decision-
support environment

Decislon-support systems require the least amount of data
concurrency. Most often, the clients of a DSS data warehouse
have read-only access, and the information Is decoded, and
calculated fields are expanded.

88 Client/Server Today— October 1994

Corp., Hewlett Packard, and Informa-
tion Builders are other companies that

offer important technology for supporting
data- warehouse approaches.

Applying TP-R

TP-R requires a very different technology than
warehousing. Production systems nee

d the current state of data, not its history. Any node
must therefore allow updates to production data.

Unlike DSS-R schemes, TP-R propagation of updates to
secondary locations need to occur as soon as possible fol-
lowing the changes to the local database. Often that
propagation is done in near real-time with a separate 2-
phase commit to each target copy location.

This update scheme differs significantly from that of a
distributed DBMS, which employs a single 2-phase com-
mit to synchronously lock all of the data copies until all
locations respond with a “committed” message. In a TP-
R replication scheme, the single 2-phase commit carried
out by the distributed DBMS is replaced by “n” (where
“n” is the number of separate data locations) distinct and
separate 2-phase commits that are carried out by a repli-
cation server.

Once the replication server is notified by the local
DBMS that a transaction is waiting to replicated, the serv-
er examines the distribution queues and schedules mul-
tiple subtransactions to update each of the target data-
bases. Since the target databases are typically remote, the
replication server uses a separate 2-phase commit proto-
col when moving transactions from the distribution
queue to each individual target database. Should any tar-
get database be off-line or other wise unavailable for
updating, its associated update transaction will remain
in the distribution queue until a time when the target
database can be synchronized with the source.

The main benefits arising out of this TP-R approach
are faster overall system processing, faster local commits
of transactions, and the potential for significantly
reduced network traffic. More importantly, this TP-
based replication approach is more fault-tolerant than
distributed DBMS and therefore more appropriate for
many applications.

Imagine a retail operation where sales offices are wide-
ly distributed and inventory is kept at a few major supply
depots. If the supply depot information is replicated at
the sales offices, then it’s possible for the sales office to
accept tentative orders even if the network link to the
local supply depot is broken. The sales office can accom-
plish all of the processing necessary for a sale except for
a final confirmation without access to the central source
inventory data.

Applications like order processing and hotel or airline

reservations that do not require absolute data synchro-
nization are excellent targets for TP-based replication
approaches. Any application that can deal with some

Technology Forum

inconsistency among the
different data nodes for
short periods of time may
benefit from the use of a
replication server in place
of a full-blown distributed
DBMS. After all, airlines
and hotels overbook inten-
tionally.

TP-R systems are easily
able to maintain transac-
tion consistency for
updates that span multiple
tables at one or more target
sites. To ensure efficiency
for the input and process-
ing of data, these systems
frequently maintain repli-
cated data in an encoded
stateand subset that data
among servers, since each production location often has
no need to access all of the global data.

The leaders in TP-R approaches are Sybase and CA-
INGRES. Sybase’s architecture is built around a mas-
ter/slave concept, while CA-INGRES is based on a peer-
to-peer model. A transaction managed through a
replication approach is considered successful if it is com-
mitted at one site in a peer-to-peer system or at the mas-
ter site in a master/slave approach.

A copy Is a copy is a copy, or is it?

DSS-R and TP-R offer two different approaches to pro-
viding asynchronous replication of production databas-
es. Inboth cases, the process which transmits the updates
has to be reliable by ensuring that the copies get to the
targets. In addition, the process needs to be valid by
ensuring that the necessary data integrity is maintained
at the target. Itis here, concerning the integrity and valid-
ity of data, that the two replication approaches, DSS-R
and TP-R, usually part technological company.

In TP-R environments, the integrity of data at the tar-
getsite is maintained by applying database copy updates
one transaction at a time. Changed data from one user
transaction can span multiple tables at each location to
be updated. At each database server in a TP-R environ-
ment, all or none ofits tables is updated in any one trans-
action. In this way, the local data on each network node
remains consistent across all tables at all times.

In contrast, DSS-R approaches update each local data-
base table-by-table. All tables that may have been affect-
ed by one transaction are not committed in the same unit
of work under DSS-R.

The DSS-R approach is usually far more efficient in
computer and network resources, especially since it
allows for the net result of a series of updates o be trans-
mitted rather than the propagation of all the individual

Database replication in a transaction-
processing environment

Lo i L

In a transactlion-processing environment, database teplication Is done in near real-time to maintain
very high data concurrency. Replication, however, does not occur as a synchronous 2-way commit
to “n” nodes, hut as asynchronous 2-phase commits.

changes themselves. However, this “netting out” isn’t
appropriate for transaction-based environments.

More importantly, both DSS-R and TP-R approaches to
database replication can work in environments where a
distributed DBMS approach just wouldn’t work.

Imagine a situation with 100 target database nodes,
only 90 of which are available. A replication server would
successfully perform 90 separate 2-phase commit trans-
actions, each with two branches. The remaining 10 trans-
actions would be re-queued and attempted ata later time.
A distributed DBMS would attempt to perform one 2-
phase commit transaction with 100 branches and fail,
forcing all of the transactions to be rolled back.

Even if all 100 nodes were on line, the distributed
DBMS would hold locks on all 100 targets until all 100
were willing to commit. In any environment that includes
an unreliable WAN or any environment that contains
many nodes that cannot afford to be blocked, the dis-
tributed DBMS solution just won’t work.

Replication in an open environment

Replication technology can be instrumental in allow-
ing more efficient usage of a company’s computers and
network. As companies migrate to decentralized opera-
tions, they naturally want their IT support to follow along
the same lines.

As the workload is distributed, there are significant
cost savings attached to using multiple smaller machines
to process work. Replication, done intelligently, can
reduce network traffic and allow the user to derive ben-
efit from what would otherwise be unused CPU cycles.
Another way to look at this is that replication allows easy
local data access at remote sites.

This kind of capability provides for a higher level of
customer service than what could be provided by a sys-

Client/Server Today—October 1994 89

Technology Forum

tem operating off a single central database
with communication links to the distrib-
uted sales offices.

For a distributed operation, then,
replication of both TP-R and DSSR
types allows for higher system availability
than a monolithic model. Nonetheless, there
remains one very large caveat concerning replication
technology in the world of open client/server comput-
ing.
Today, there are no standards that apply to replication
across diverse products. And there are no standards bod-
ies working on this issue.

Factoring in the role of the vendor

All of the major DBMS vendors are moving toward
opening up their replication capabilities to foreign data
sources. Digital, Oracle, Sybase, and IBM are focusing
their attention on links to each other and other relation-
al DBMS products. IBM, CA-INGRES, and Sybase have
published their 2-phase commit protocols, which allows
users of their products to participate in heterogeneous
distributed database solutions with products from other
vendors.

Both Sybase and CA-INGRES have links to non-rela-
tional data sources in their target replication capability.
Normally, if the vendor supports a DBMS gateway to any
foreign data source, then that data source can also serve
as a target for replication.

Such gateways to non-relational data sources don’t
require special coding like RPCs and are valuable in
allowing the integration of new distributed systems with
older legacy applications. For both Sybase and CA-
INGRES, external non-relational data sources include
both VSAM and RMS files.

As a general rule, replication from a foreign DBMS
into a replication environment like CA-INGRES or
Sybase is only available now if the user is willing to pro-
gram that functionality. One important exception is an

IBM offering that allows replication
from IMS into the DB2/DRDA world.
Anyone contemplating the acquisi-
tion of replication technology should
understand how your vendor will assist in
migrating to a heterogeneous DBMS envi-
ronment. Almost no organization today
uses one DBMS exclusively. Heterogeneity in
database and file management approaches is likely to
increase in the future.

Gateway solutions, of course, are not the same as a
replication and 2-phase commit process that transpar-
ently operates over multiple databases. The real world is
multivendor, multidepartment, and multinetwork. Repli-
cation technology that can operate well across heteroge-
neous DBMSes is something that DBMS users will want.

George Schussel is president of DCI, an Andover, Mass., con-
sulting firm that sponsors a number of symposiums, including
the DCE Developers Conference. Starting next month, Schussel,
a frequent speaker on database and client/server development
issues, begins a mew column called Convergent Views in
Client/Server Today.

