
A GENERALIZED WAY OF THINKING ABOUT N-TIER CLIENT/SERVER 
ARCHITECTURES 
by George Schussel 

 
 
The classical client/server computing model (illustrated in Figure 1) is evolving as 
companies gain experience with it. Client/server computing emerged as a 
solution to performance problems with file server systems as they began to scale 
upwards from a few users to a few dozen. The file server approach (popularized 
by dBASE and FoxPro) is to transfer files from a shared server to the desktop 
PC. That approach is simple and works as long as shared usage is low and the 
volume of data to be transfered is low compared with LAN capacity. As 
customers demanded GUI computing against shared databases, demand for 
client/servers grew rapidly over the last few years. By now, the idea of using 
Windows or Mac style PC’s to front end a shared database server is a familiar 
and widely implemented. 
 
The 2-tiered client/server architecture has proven to be very effective in solving 
workgroup classes of problems. “Workgroup” is loosely defined as six to 50 
people interacting on a LAN. For bigger, enterprise class problems and/or 
applications that are distributed over a WAN, use of this 2-tier approach has 
generated some problems. What typically happens with a 2-tier architecture is 
that performance deteriorates as the scale increases. One corresponding result 
is that this architecture is expensive to implement over a WAN.  
 



FIGURE 1 - THE BASIC 2-TIER ARCHITECTURE 
 
The software tools community and advanced users have responded by 
combining some new and some old ideas in new forms creating a “3-tiered” 
architecture for client/server. The advantage of 3-tier is that it can be used for 
larger and more widely distributed applications. This 3-tier architecture (illustrated 
in Figure 2) looks much more traditional than a 2-tier approach because most of 
the application’s logic has been moved off the PC and into a common, shared 
server. The PC is basically used for presentation services - not unlike the role 
that a terminal plays. Since the application server doesn’t need to worry about 
driving a GUI, it can devote all of its resources to business logic. As a server it 
can run an efficient multitasking OS like NT, OS/2, or UNIX. These server OS’ 
also run on symmetric multiprocessing (SMP) configurations, therefore, the 
server is much more scaleable for performance than a PC. In addition, as new 
versions of the application software are developed and released, the installation 
of that software occurs on the single server rather than hundreds or thousands of 
PC’s. 
 
 



FIGURE 2 - A 3-TIER APPLICATION SERVER ARCHITECTURE 
 
One particular type of application server is known as a transaction processing or 
TP monitor. Almost all interactive applications in the 1970’s and 1980’s were 
implemented with TP monitors like IBM’s CICS.  TP monitors haven’t been used 
in 2-tier client/server architectures. That’s because many of the services provided 
by a TP monitor have been included as part of the DBMS services provided by 
vendors like Sybase and Oracle. Those embedded (in the DBMS) TP services 
have acquired the nickname “TP Lite”.  
 
It’s most useful to think of a TP monitor as a kind of messaging service. It allows 
applications on a PC to asynchronously connect to the TP monitor, which acts as 
a queue server. The transaction is accepted by the monitor, which then takes 
responsibility for managing it to correct completion. For a really scaleable 
application, a true TP monitor is an absolute requirement. Some other key 
services that a monitor provides are: 
• The ability to update multiple different DBMS in a single transaction  
• A facility for developers to ignore different OS and DBMS engines and just 

write to the TP monitor interface 
• The ability to attach priorities to transactions 
• Support for data stored in non-RDBMS DBMS’ and files 



• Robust security, including Kerberos 
 
With all those positives it might seem that all client/server applications should be 
written with a TP monitor; however, there is a downside to the technology.  That 
downside is the added complexity of the application code - and the necessity of 
writing that code, as opposed to using visual generators like PowerBuilder or 
Visual Basic. 
 

FIGURE 3 - A 3-TIER ARCHITECTURE WITH TP MONITOR 
 
 
 
 
 
 
 
 
 
 
 
 



A 3-tier architecture is also useful for data mining or warehouse types of 
applications. These applications are characterized by unanticipated browsing of 
historical data. The databases supporting this type of application can sometimes 
be huge (up to a few terabytes -1012 bytes); therefore, the structure of the 
database and the tools used to browse it must be right or the performance 
becomes unacceptable.  
 

FIGURE 4 - A 3-TIER ARCHITECTURE FOR DATA WAREHOUSING 
 
Because long, time-consuming database browses can negatively affect the 
performance of the on-line systems that update data, the best and most typical 
way of creating a warehouse application is to create a data copy of the 
necessary information and load that data copy on its own server (Illustrated in 
Figure 4). Regardless of the form of storage of data on the mainframe TP 
application(s), the data copy is usually stored in the DBMS server in a relational 
DBMS or an OLAP (on-line analytical process) server. When the data copy is 
created, value is usually added in the form of denormalization and 
summarization. 
 
 
 



Three different types of 3-tier architectures are introduced in Figures 2 through 4. 
Since it’s still early in the technical evolution of client/server computing, it’s very 
unlikely that these three different examples of new architectures are the only 
manifestation of multi-tier client/server architectures. In fact, it’s easy to imagine 
the combination of two or more of these approaches into a “4-tier” architecture as 
illustrated in Figure 5.  

FIGURE 5 - A 4-TIER ARCHITECTURE WITH APPLICATION SERVER AND TP 
MONITOR 

 
Here we’re using an application server to centralize most of the business logic 
and a TP monitor to provide the advantages listed above. While certainly more 
complicated to develop than traditional 2-tier approaches, this type of application 
architecture is very scaleable and would be an appropriate structure for 
developing enterprise wide client/server applications.  
 
 
 
 
 
 
 



As the application building tools, systems management, and DBMS products for 
client/server become more mature, we may see companies migrating to mature 
general purpose “N-tier” architectures. Such an approach, which combines all of 
the concepts mentioned above is illustrated in Figure 6. 
 
 

FIGURE 6 - AN N-TIER ARCHITECTURE CUSTOMIZABLE TO NEEDS 
 
The diversity of these approaches confirms the power of the client/server 
architecture. It allows the designer to mix and match technologies in order to 
meet the needs of the environment.  
 
 
 
 

 

Schussel is the founder and Chairman of Digital Consulting, Inc. (DCI) in 
Andover, MA and Chairman of the Database & Client/Server World trade show. 
Reach him at 74407.2472@compuserve.com or http://www.dciexpo.com/. 


