
DATABASE REPLICATION

This is the second of a twopart series. Using middleware constructs like
Database replication is designed to provide
the data-availability be~zejits of distributed message queues, database replication
databases, while avoiding the inherent
bottleneck of synchronized 2phase com-

servers offer advantages traditional
mits. he f i r s t article in the series focused on distributed database architectures
re$lication's overall importance and bene-
fits, and provided an introduction to the can't deliver
two forms of replication services. This BY GEORGE SCHUSSEL
month. we -nine in detail the difl2rences

JJ

between these two forms of replication: s distributed operational applications become more

data warehousing and high-end transac- widely used across large enterprises, pressures are
increasing to maintain local copies of key corpo-

twn$mcessing class replication servers. rate data to improve response time for local
queries. As a result, corporate databases---or at

least the data residing in those databases-will have to
migrate out from the secure and highly optimized
sanctuary of the glass house into the distributed
and often chaotic world of open systems.

Replication provides a way to copy and distrib-
ute data residing in corporate databases to multi-

tions for use in distributed appli-
cations. Replication provides

users with autonomous control
of their own local copies of produc-

ta in order to enhance local pro-
cessing speeds, reduce network traffic, and,

in some cases, provide distributed, non-stop

ation, or data copying, can clear-
ly give users much quicker access to local data, the
challenge for IT is to provide these local copies of
corporate data in a way that maintains the same
data integrity and operational management that is
available with a monolithic, central data repository

The reason for all the attention being given to repli-
es the best current solution for a

Client/Server Today-November 1994 57

Technology Forum -

DATABASE REPLICATION

cheaper and more reliable
alternative to a distributed
DBMS engine.

A distributed DBMS uses
a 2-phase commit to couple
all updates to all locations
participating in an update
into one very secure trans-
action.

Replication uncouples a
local transaction from the
process of updating any
distributed copies of the
data. It relies instead on a
behind-the-scenes middle-
ware process to coordinate
all of the multiple updates
that are necessary to syn-
chronize all of the local
databases around the net-
work. CA-OpenIngres, for
example, relies on message

IBM uses a three-tiered approach to provide data warehousing
functionality for decision support.

queuing to manage the replication process.
Although many DBMS vendors are talking about repli-

cation offerings, it would be a mistake to assume that
replication is a commodity. Different architectural
approaches toward implementing replication provide
fundamentally different capabilities.

Each approach to replication is well suited to solving
certain classes of problems. The different types of tech-
nologies, in fact, span a scale of approaches.

On one side of the copy continuum are approaches
that are well suited for supporting decision making,
browsing, and research on LAN-based PCs or other plat-
forms. On the other side are classes of technologies that
are appropriate for supporting operational systems
whose principal role is allowing realtime transaction pro-

1. Understand what is broken.

2. Understand how the break occurred.

3. Determine how to fix the damage and
reinstate the broken pieces.

4. Bring back the broken pieces on line.

5.Make sure that recovery of the databases results in
consistent data across those databases.

*--?&-

58 Client/Server Today-November 1994

cessing in widely distrib-
uted locations.

Which type of replica-
tion strategy is most appro-
priate depends on the
problem or application.
Decision-support applica-
tions are often well sup-
ported by technologies
that employ simple table
copying, or snapshot tech-
nologies. Moreover, these
technologies can support
nlultiple schemas or data
views, and they are nor-
mally set up so that the
copies are read-only. These
decision-support replica-
tion (DSS-R) solutions are
often referred to as data
warehousing.

DSS-R approaches to
replication usually are built on various technology varia-
tions of table copying. Tables at the target location are
created one at a time, drawing from one or more source
tables or files. DSS-R copies are inherently read-only.

Most approaches provide for transactionconsistent
data within a table, but are not concerned with transac-
tion consistency across sets of target tables. A common
environment is for tables to be updated after the close of
business, so fully consistent environments are established
by the morning.

Decision-support replication schema

The typical decision-support application has a require-
ment for consistent period data sources and not neces-
sarily for data that is up-to-the-minute current. DSS-R
approaches, then, don't typically worry about keeping
the data current: Daily or less often is typical scheduling
for updates.

Consistent, stable data for a given period is the highest
requirement for these types of applications.

More importantly, decision-support systems maintain
historical records that end users will not typically need to
update. Such data stores are tuned explicitly for query
processing.

Frequently, such tuning adds more indexes and
expands stored data by storing values that would have
been calculated in the production database. As a result,
continuous propagation of updates would interfere with
the query tool's ability to provide reasonable perfor-
mance above and beyond the additional load that would
be created on the replication server.

The replication server in a DSSR environment should
therefore provide various timing options, which can cre-

DATABASE REPLICATION

ate copies based on timed events (wall- mission of a full refresh table copy is
clock time or the passing of a fixed not economically or technically feasible
time interval), based on application on a nightly basis. As a result, change prop
events (completion of an end-of- agation is the only solution. In order to
day reconciliation), or based on ensure that consistent data is propagated in
explicit operator requests. Other this scenario, a 2-phase commit process should
important requirements for decision s u p be used for the changed data transactions. The
port include the ability to access legacy prc- value added to the data by manipulation or
duction system data frbm sources l&e IMS, RMS,
VSAM, and flat files and to provide for sophisticated
manipulation and enhancement to that data.

An example of data enhancement is what IBM has
implemented in its Information Warehouse, which is a
sort of three-schema architecture for decision-support
purposes. Recognizing that operational systems fre-
quently are not correctly structured for supporting
queries, IBM offers reconciled copies and derived data
that summarize and add calculated values to copies of
data made available for decision support.

These copies can be updated at any time and accord-
ing to criteria established by the database administrator.

Time-based data is also important, particularly where
trend analysis is desired. For this capability, the mainte-
nance of data histories is important. Such histories can
include complete records of all activities to a table, sum-
maries based on point-in-time source data, and sum-
maries based on changed data.

DSSR approaches are very useful in situations where
companies are downsizing and the distributed applica-
tions need to share data with host legacy systems.

The assumption of DSSR is that updates will be made
at the single source sites, not at the data copy sites. Some-
times, source data is in a central host, but other times it
can be located in remote locations that own distinct data
fragments. The data copies, however, are read-only.

The predominant technology for DSSR replication is
some form of extract, manipulate, and further process-
ing. These runs are typically batch jobs that occur after
on-line transaction processing has ceased. It is much sim-
pler to ensure that consistent transaction data is copied
when the source tables are not being updated.

A common application model for such data copying
occurs at companies with many branch offices.

In such a scenario, there may be hundreds or even
thousands of database servers. With so many copies to be
made, efficient distribution requires support for cascad-
ing replicates where copies can be made from other
copies in a very coarsely-granular, parallel-processing
scheme, where the central host feeds a small number of
distribution nodes, which in turn feed multiple branch-
office sites with data that is properly subsetted for their
local operations.

Alternatively, DSSR may be provided through propa-
gation of source table changes to the target. In large data-
base environments with multiple 100s of gigabytes, trans-

enhancement is very important in DSS-R environ-
ments. Sources are typically legacy systems. The replica-
tion solution should provide the ability to restructure the
data from legacy formats into the relational model.

Tools should provide support for performing relation-
aljoins of data from multiple sources, for calculating new
values, for aggregating data and for transforming encod-
ed data into descriptive forms.

An important point to keep in mind is that while one
of the principal benefits of DSSR is the aggregation of
data, or denormalization as it is sometimes called, this
process should not be done when the replicated database
is updatable. The reason for this will be discussed further

By cascading database replication updates from the master
database over multiple replication servers, the processing of
updates for sites with hundreds or even thousands of nodes can
be rapidly speeded up.

CliedServer Today-November 1994 59

Technology Forum -,-

DATABASE REPLICATION

on, in the section that deals with trans- and flexibility in timing network traffic.
action-processing replication For example, push systems typically dis-
schema. tribute every transaction to the target. Tar-

Where change capture and get systems must therefore process every
propagation schemes are used, transaction. If only summary data is required
there is a choice in the distribution by the target system, then data transformation
model: whether to "push" the changes in is an added processing cost required of the tar-
the data from the source host to the target client get system as part of the replication process.
systems as the changes occur, or whether to "pull" the
changes in the data from the source system as the target
clients request the changes.

Optimization: push and pull

In general, the push model is best for continuous,
almost realtime propagation. The pull model, which pro-
vides greater flexibility in reformatting and combining
the data on the source system, is best for looser currency
requirements. The pull model also allows more control

Set up a plan. Understand the rules for distribution
of data before implementation begins.

Make sure that your distributeddatabase administra-
tor has good forms-based CA-Openlngres, or GUI-
based-Sybase System 10 utilities to help configure
the database and manage the network.

Consider:
-how you specify enhancements to the data, and
whether you will have to learn a new language
for this function

-how the replication setup is handled, and how
much automated support is provided

-what support is provided for automatically
handling failure managementand how much
intervention by the database administrator
will be required

Make sure your utilities can tell you which tables,
columns, and rows are located at the various nodes
and to which nodes transactions are routed.

You should be able to change the database configura-
tion on the fly without bringing the database or repli-
cation operation to a standstill.

There should be a mail-based error notification sys-
tem to allow management of the distributed
enterprise from any node on the network.

60 Client/Server Today-November 1994

- ,

Pull systems, however, provide the oppbrtunity for
aggregation prior to distribution. This is effective both
where only summary data is required, and where replica-
tion of numerous changes to database hot spots (areas
within the database that receive the most update activity)
can be deferred until they can be aggregated and the
effects of all of the changes netted out.

For decision-support or other static data applications,
the need for near realtime information may not be
important. For these applications, the needs for multiple
schemas or data views, for efficient query processing,
and for a consistent stable database over a specific peri-
od of time can be best satisfied with a decisionsupport
replication schema.

Transaction processing replication schema

If you are distributing production operational sys-
tems, DSSR technology isn't likely to work for you. A
transaction processing replication (TP-R) approach that
can maintain near realtime transaction integrity at data
copy sites is essential. TP-R replication is primarily con-
cerned with creating a single image of a database across
distributed autonomous sites and preserving database
integrity in near realtime processing. The overall integri-
ty of databases is preserved by forwarding data changes
resulting from single user transactions.

TP-R approaches have been implemented with two
fundamentally different architectures by Computer
Associates in CA-OpenIngres and Sybase in Sybase Sys-
tem 10. CA-OpenIngres has built its replicator on a peer-
to-peer architecture approach. Sybase System 10 uses a
master/slave approach.

Nonetheless, Computer Associates maintains that
because CA-OpenIngres was designed to be operated in
a peer-to-peer environment, it can function in a mas-
ter/slave mode as well.

In addition, Computer Associates touts the ability for
CA-OpenIngres to be configured in a hybrid configura-
tion called central/branch in which updates can be
made at any local database. However, replication of all
updates is managed by a central server.

Adding even further to the confusion, Sybase claims
that it is possible to configure Sybase System 10 in a peer-
to-peer scheme. Nonetheless, the amount of middleware
that would be required to implement such a schema at
an end-user site is nothing short of prodigious.

In the master/slave architecture, every table or table

DATABASE REPLICATION

fragment is assigned to a
primary or master site. In a
master/slave scheme, data
is replicated only in one
direction: from master to
slave. Updates to the data-
base must successfully
complete at the master
before the transaction is
considered to be a success,
as far as the application is
concerned. Sybase System
10 uses asynchronous
stored proceedures in a
master/slave topology to
redirect updates made at a
local database first to the
master system so that the
update can be replicated
back to the local database.

This can present a prob-
lem for remotely generat-
ed transactions. This is
because those processes
cannot update their local
or other sites, until they
are first routed synchro-
nously through their pri-
mary tables.

If the primary table's
database server fails or
access to that server from
the network is denied, repli-
cation does not occur, and
the transaction is queued.
Under the Sybase System 10

CA-Openlngres uses message queuing as a medium to stage
near realtime database replication in a transaction-processing
environment. In a peer-to-peer schema, CA-Openlngres permits
updates to be made at any node and then relies on that node to
send the proper update messages to keep all of the copies of
the data synchronized.

scheme, a user issues an update via a stored procedure,
which is passed from the local replication server to the
primary or master replication server. The primary data-
base server executes the stored procedure, and that
change is then replicated by the primary replication serv-
er and passed back to the local replication server. On
receiving the transaction from the primary server, the
local replication server can then update the local data-
base server.

On the other hand, updates in peer-to-peer approach-
es can be made to any data location and then copied into
other locations.

A transaction is successfully completed as soon as any
one or combination of locations is able to update one
complete copy of the affected data. Peer-to-peer allows all
locations to own and manipulate any data, broadcasting
changes as required.

Implementing such an update-anjwhere replication
strategy for vendors is not an easy task. The primary

stumbling block is how to
resolve the inevitable con-
flict that occurs when two
users attempt to update
the same record on differ-
ent servers at the same
time.

While the Sybase archi-
tecture is master/slave,
the vecdor states that its
Sybase System 10 can be
set up to support a peer-to-
peer replication server
approach.

However, if' you want to
build a peer-to-peer archi-
tecture with Sybase tech-
nology, you will have to
write your own software
for collision identifica-
tion, resolution, and
recovery.

Fundamentally, the
master/slave approach to
TP-R can be characterized
as simpler for vendors to
implement because it
eliminates the potential
problem of update colli-
sions. For users, the rela-
tive implementation sim-
plicity of a master/slave
schema can often result in
improved performance of
applications over a peer-to-
Deer im~lementation,

thanks to lower DBMS overheid. On the 'other hand, the
master/slave schema introduces a single point of failure
that can lower overall system availability. Computer Asso-
ciates with CA-OpenIngres is the only vendor at this time
that has a true peer-to-peer replication architecture,
which is the most general and the most powerful
approach to TP-R replication.

It is closest in capability to a true distributed DBMS in
that there is no limitation on where data can be located
or updated. Moreover, as a result of a peer-to-peer repli-
cation server's use of many individual 2-phase commits
to broadcast data changes asynchronously from the orig-
inating application, a peer-to-peer replication scheme is
more fault-tolerant than a distributed DBMS.

Collisions with peer-to-peer architecture

The possibility of collisions remains a nagging prok
lem with the peer-to-peer replication approach. A colli-
sion occurs when a record that is physically replicated at

Client/Server Today-November 1994 61

DATABASE REPLICATION

two or more sites is repeat-
edly updated during the
asynchronous latency peri-
od of a replication update.
In other words, after the
first update has happened
at one site, a second update
occurs and is processed at
another site before the
propagation of the first
update has been complet-
ed. Therefore, while a peer-
to-peer approach provides
the most general solution
for transaction distribu-
tion, it requires software for
collision resolution.

When a collision occurs,
there is no way to construct
an application-indepen-
dent approach that can
recover all different types of
databases. However, the
replication server can and
should have collision-reso-
lution logic.

Therefore, from the
moment any transaction is
committed, the replication
server must keep track of all
of the processes that hap-
pen during the processing
and distribution of that
transaction. That is
because in the event of a
collision. this information

Using the message queue construct, CA-Openlngres can also
implement a master/slave topology in which all updates are
promulgated from the master database.

Distributed Computing
Environment (DCE), 9

which provides the neces-
sary synchronization.

Experience to date with
users of peer-to-peer repli-
cation indicates that if the
replication timing chosen
is ASAP and if the databas-
es have been properly
designed for replication,
the volume of collisions is
likely to be quite low.

The conflicts that do
occur can be handled by
rules in a collision-resolu-
tion software module that
logs entries for manual
review. Future capabilities
for replication servers in
this area may include
expert systems to help
resolve collisions.

The fault-tolerance
advantage

One key benefit of all
replication approaches is
added fault tolerance for a
distributed computing
environment.

Fault tolerance provides
the overall system with a
capability of continuing to
function when a piece of
the environment is down.

must be available to properly resolve the collision. When something breaks, then, the system working in
To resolve that conflict, the replication server should combination with the database administrator should pro-

support multiple options from which the database vide as much assistance as possible in the recovery 6
administrator can choose. process. Mike Stonebraker, the father of Ingres, has used

Examples of resolution possibilities include: giving pri- the phrase "failover reconstruction" to describe when
ority to the initial update; rolling back any later conflict- this recovery process occurs automatically under soft-
ing transactions giving prioity to the last update; o17er- ware control. The highest level of fault tolerance will be
writing any earlier co&%cting transactions and sending
messages to designated parties; resolving the conflict by
firing a user-specified trigger; and, finally, halting the
replication process and sending a message to the data-
base administrator.

In order for a nu,gber of these conflict-resolution
strategies to work, it would be very helpful if a distributed
time service was available.

Unfortunately, current replication servers don't pro-
vide this service and instead rely on the separate operat-
ing system clocks. If they are not synchronized, errors will
result. An important new facility for this service is OSF's

-
from a system supporting peer-to-peer replication.

That's because the system considers an update to be
successfully completed when it has completed a database
update at any peer site.

The site that is updated is like a floating master in this
case. The replication server will queue the updates to all
other data locations. In a master/slave architecture, if
access to the master is denied, then the update is not
allowed from the application.

When the master location becomes available it will be
updated. After the master has been updated, the repli-
cation server attempts to update the slaves. If there is a

64 Client/Server Today-November 1994

Technologv Forum
DATABASE REPUCAnON

failure on the network, the master queues ed at Branch A, then Branch A will
the updates for the slaves for delivery show a balance of $70.
when they become available. This sys- Any attempt to reconcile the bal-
tem works as well as a peer-to-peer ances among the three banks at any time
approach as long as neither the mas- thereafter will fail. That is because the
ter node nor the network fails. account balance field in this example is

If either is the case, it's important that your aggregated and denormalized.
system provide the necessary utilities to allow the Replicating balance information is going
rebuild& of remote databases from information on the
local log and database information on other remote data-
bases. One such key utility should provide the ability to
"difference" replicates-in other words, to look at a mas-
ter and slave or two peers and determine if inconsisten-
cies exist.

Transparency and richness of function

For a replication server product to be successful, it has
to provide enough added function over what customers
have developed for themselves, and it should provide that
function transparently . There is a significant difference
in the amount of replication functionality and in the ease
of implementing replication services by various DBMS
vendors. Some products require significant program
ming with database triggers or database calls to imple-
ment replication.

Most of the current replication funcctionality in Oracle
7 and much of the service available through Sybase Sys-
tem 10 Replication Server require programming with
RPCs or DBLib calls by the distributed database admin-
istrator.

Setting up database replication with CA-OpenIngres is
easier, in that a configuration manager is provided that
offers a three- step, forms-based approach to defining the
replicated environment.

In order to provide transparent replication services to
applications, the database administrator in a distributed
database environment needs to be very aware of the use
of a replication server, and needs to have designed the
database in a way that's conducive to a distributed oper-
ation. In practice, this issue means that denormalized or
aggregated data should not be replicated in TP-R situa-
tions. Such derived or aggregated data should be com-
puted at each site from the basic data contained in a
transaction.

To see this point more clearly, let's look at a simple
banking example in which aggregated account balance
information is replicated at a bank's three branches-A,
B, and C.

Suppose we look at one customer's balance, which is
$100 at all three branches. If the network goes down at
Branch A and the customer makes a $40 withdrawal at
Branch B, then both branches B and C will show that
account as having a $60 balance. If the customer then
makes a $30 withdrawal at Branch A before the network
comes back up and the earlier transactions are replicat-

to cause integrity problems with the databases. If thk sysx
tem had simply replicated the transaction amounts-nor-
malized data-each site would be able to recover correct-
ly by using a time order to sequence and compute the
balances. In general, a good rule for distributed process-
ing is to use local database triggers to handle computed
amounts like account balances.

Furthermore, your application should not need to con-
cern itself with the timing of the asynchronous distribu-
tion of data to target sites. Getting this functionality from
your replication server also should not require you to do

CA-Openlngres can also be configured in a replication scheme
that is a hybrid of the peer-tc-peer and master/slave topologies.
In this configuration, updates can be made on any node-just as
in a peer-to-peer scheme. Replication, however, is handled by a
central server, and client databases do not communicate
directly with one another, as in a master/slave scheme.

66 Client/Server Today-November 1994

DATABASE REPLICATION

programming. The nature
of system usage will dictate
the'type of t h i n g used in
replication.

For operational systems
that expect to be updated
with near realtime &ansac-
tions, the best approach is
likely to be ASAP. There is
no additional processing
overhead attached to
ASAP replication in this
case, because the user is
likely to be in a situation
where the copy distribu-
tion is under 2-phase con-
trol for each updated site.
In such a case,-then, there
is no processing savings
attached to batching the
transactions.

For decision-support or
period accounting types of
systems, a stable database
that is consistent through-
out mav be preferable-to
having the most current
status. In this case, for rea-
sons discussed above,
scheduled rather than
ASAP replication may be
preferable.

A few good DBAs
The benefits of a p rop

erly implemented replica-
tion scheme can be sub-

Updates to a replicated database under Sybase System 10 must
be processed at the master database node. A stored proceedure
is first initiated at the local replication server, which passes the
procedure to the master replication server. The latter then
initiates the update action on the primary database server. This
action triggers the log transfer manager to cause the primary
replication server to send an update notice to the local
replication server, which finally updates the local database
server.

Managing distributed
data through replication
and copy approaches is
non-trivial. It will require
competent technical man-
agement. Just evaluating
the different technologies
that are currently avail-
able will require an analyst
who is of top caliber.

It is wise, therefore, to
invest the necessary
resources to make sure
that the combination of
local and global database
administrators (DBAs) is
adequate for your envi-
ronment.

Your database adminis-
trator will have to create a
database design that is
correct for replication and
test it in the distributed
environment. It is impor-
tant not to shortchange
the time that it takes for
your database administra-
tor to become an expert in
diagnosing and resolving
problems in such an envi-
ronment.

Finally, because imple-
menting distributed sys-
tems offers so many combi-
nations of technology and
benefits, vou will need to
do some careful manage- -

stantial. A distributed environment's complexity, ment analysis in order to understand how these approach-
however, in both a managerial and technical sense, is es can support your business requirements. a
much greater than that of a local, monolithic environ-
ment. This is especially true for TP-R environments. Consultant George Schussel is founder and chairman of Dig-

Data collisions may occur with peer-to-peer approach- ital Consulting Inc. (DCI) in Andove5 Mass. A CIO, consul-
es; the recovery process that this implies requires both tant, industry analyst, and lecturer, Schussel has written a new
the cooperation of excellent software and of competent book, coauthored with Steve Guengerich, titled Rightsizing
administration. Information Systems (SAMS Publishing).

I COMPAN~ES TO CONTACT FOR DATABASE REPLlCATlON PRODUCTS I
COMPUTER ASSOCIATES IBM , CIRCLE 915) CIRCLE 917

INFORMIX , CIRCLE 919

DIGITAL EQUIPMENT INFORMATION BUILDERS MICROSOFT
)CIRCLE 916 , CIRCLE 918) CIRCLE 920

RED BRICK SYSTEMS , CIRCLE 9 2 1

SYBASE
b CIRCLE 9 2 2

CliendServer Today-November 1994 67

