Abstract

This report, The Foundation for Downsizing: Distributed and Client/Server Database Management
Systems (DBMS), provides a comprehensive overview of the what, why, and how of distributed
and client/server computing. It explains the benefits of this technology and its usefulness in both
decision support and transaction processing environments. Client/server and distributed DBMS
technologies are related, but not identical. This report explains the differences between the two

approaches.

Other topics covered include a criteria list for describing the functionality expected of a true
distributed DBMS. Some advanced levels of functionality are described as well. Examples of
successful case studies are used to prove the point that client/server and distributed DBMS
technology is definitely ready for serious transaction processing workloads.

The report concludes with a list of advisories and cautions for MIS managers preparing to take the

client/server route.

About the Author

Dr. George Schussel, President of DCI, is a world-renowned authority on distributed and
client/server DBMS technology, and acts as a consultant to Fortune 500 companies in this capacity.

Introduction

One of the key trends in modern computing is
the downsizing and distributing of
applications and data. This paradigm shift is
occurring because companies want to take
advantage of modern microprocessor
technology that allows them to cut costs and
add flexibility, while also allowing them to
benefit from the new styles of software
which employ graphical user interfaces
(GUIs). Client/server and distributed
database technologies are two fundamental,
enabling technologies involved in
downsizing.

The benefits of client/server computing are so
compelling that most companies find them
impossible to ignore. These benefits are:

1. Cost Savings - By distributing processing
over a number of microprocessor-based
computers, networked together, rather
than a few larger machines, users can
take advantage of computer instruction
cycles selling for $100/MIPS (one million
instructions per second) on PCs, versus

cycles selling for $60,000/MIPS
(discounted prices) on mainframes.

. Scalability - The modular nature of

client/server approaches means that such
networks can be easily expanded by
adding more nodes, or migrating to
newer processors on existing nodes. This
offers a developer or user the tremendous
advantage of keeping application software
constant, as the size of the application
moves from a small local area network
(LAN) to environments as large as
supercomputers.

. Faster Application Development -

Development of client/server applications
is now available with database-oriented
fourth-generation development
environments such as INFORMIX-4GL.
These advanced higher-level tools offer
an easy-to-use application development
environment. Applications can be built in
one-quarter of the time, at less the cost,
and by less experienced programmers.

4. GUI Interfaces - There is little doubt that
graphical interfaces such as Windows,
Motif, and Presentation Manager offer
many tutorial, usage, and productivity
benefits for users. In addition to straight
DOS and other character-based
environments that can be supported on
the client, many client/server users are
building on these GUI bases for their
client-side computing.

5. Interoperability within the Desktop - As
Windows evolves to become a standard
on the desktop, facilities like the
Windows clipboard allow the tight
coupling of typical desktop applications
such as word processing with data
processing. For example, the results of
an SQL-based query (a data results table)
can be cut and pasted directly into a Word
document or Excel spreadsheet.

6. Robustness - One of the disadvantages of
downsized systems based on file server
approaches was that the security and
integrity functions of true DBMS-based
systems were not available on file
servers. Client/server approaches, on the
other hand, are based on SQL relational
DBMS servers, and offer all of the
robustness, security, and data integrity of
the traditional mainframe computing
environment.

Client/server approaches are usually
implemented with individual applications
running over multiple computers. The
database(s) resides on server machines, while
the applications run on client computers.
While the type of computer used as a server
varies widely (e.g., mainframe,
minicomputer, workstation, or PC), most
clients are PCs. Local area networks provide
the connection and transport protocol used in
linking clients and servers.

The client/server approach calls for a
connection between the application running
on the client, and the database running on one
server. And, it calls for the division of
processing load between the two, such that
the client system handles all the application
and user interface logic, while the server
handles all the data-related operations. (See

"The Components of a Client/Server
Architecture," page 5, for a detailed
breakdown of tasks handled by each.)

A distributed DBMS offers the capabilities of
client/server DBMS and more. The most
fundamental difference between the two
architectures is that the distribution of data
within a distributed database is both
pervasive and invisible, and involves storing
data across more than one server, yet
accessing the data as if it were stored in one
location. To facilitate this, a DBMS server
resides on each database node of the network
and allows transparent access to data
anywhere on the network. Therefore, the
user is not required to physically navigate
through the data.

To clarify the distinction, with a distributed
DBMS, the "home server" is connected to,
and handles the calling of, other servers as
needed in a distributed transaction. Whereas
in a client/server configuration, the "home
server" handles all transactions itself, without
the involvement of other servers. The client,
in the client/server system, can disconnect
from its "home server" and establish a
connection with another server to connect to
different databases (held on other servers),
but there are no distributed transactions
between these various servers. In a
distributed system, once an SQL query or
remote procedure call is directed to the "home
server,” its query optimizer for SQL will
handle the internal database navigation to
involve other servers in the transaction, as
necessary, to satisfy the client request. Many
of the advanced functions described later in
this report, such as stored procedures and
triggers, are available in both client/server
and distributed DBMS environments; while
functions that relate to the synchronization of
data stored across multiple servers, such as
two-phase commits, pertain to distributed
DBMS environments only.

Note: In the remainder of this paper the term
DBMS represents the system software that
controls data (i.e., the database server), while
the term database represents the actual data
itself.

Client/server DBMS and distributed DBMS
have much in common; both are based on the
SQL language, invented in the 1970s by
IBM, and standardized by ANSI and ISO as
the common data access language for
relational databases. Both are also appropriate
architectures for distributing applications,
while distributed DBMS is a necessary
architecture for distributing the physical data.

Background on Distributed
Database Computing

The market for modern distributed DBMS
software started in 1987 with the
announcement of INGRES-STAR, a
distributed relational system from RTI (now
the INGRES Division of ASK computers) of
Alameda, California. Most of the original
research on distributed DBMS technology for
relational systems took place at IBM
Corporation's two principal California
software laboratories, Almaden and Santa
Theresa. The first widely discussed
distributed relational experiment developed
within IBM's laboratories was a project
named R-Star. It's because of IBM's early
use of the word "Star” in describing this
technology that most distributed DBMS
systems have "Star” incorporated into their
name. Today, the market for distributed
DBMS is almost entirely based on the SQL
language and extensions. (The principal
exception is Computer Associates, which
inherited IDMS and DATACOM prior to
relational systems and has implemented
distributed versions both with and without

SQL.)

" Distributed DBMS products can be thought
of as occupying the Mercedes Benz echelon
of the marketplace. These products support a
local DBMS at every database node in the
network along with local data dictionary
capability. The disbursement of physical data
across multiple database server nodes is the
essential difference between distributed
DBMS and client/server systems. In a
client/server approach, the DBMS and the
physical data reside on one node, rather than
multiple nodes, and are accessed from a
requester piece of software residing on the
client node.

The market for distributed DBMS has grown
slowly for two reasons: 1) users aren't sure
how to use the products, and 2) vendors are
taking the better part of a decade to deliver a
full range of functionality. Another important
and unanswered concern is that companies
don't know what to expect of communication
costs for functions that have historically been
run internally on a single, centralized
computer. Now, however, with the imminent
widespread availability of 100 megabits per
second capability across LANs (with fiber
and/or copper), concerns about
communication costs and availability of
advanced feature sets for distributed
databases are disappearing. The growth in
usage of distributed DBMS software in the
90s is likely to be significant.

Background on Client/Server
Database Computing

If distributed DBMS products are likened to
the top tier of the automobile market, then
client/server DBMS servers are the Fords and
Chevrolets. By accepting a reduction in
functionality from what a distributed DBMS
provides, vendors have developed
client/server DBMSs that run exceedingly
well on modern PCs and networks.

The ability to separate the application logic
from the database server processing, across
two different computers, has led to more
horsepower available at the client system to
run the new GUI interfaces, providing users
with easier, more intuitive access to the
information they need. At the same time,
advanced DBMS server capabilities, like two-
phase commits and distributed JOINs across
multiple servers, are becoming available for
distributed DBMS. It's very likely that both
markets will merge over the mid-term future.

Much of the impetus for downsizing comes
from the fact that many companies want to
implement applications that were previously
forced to reside on mainframes onto faster,
cheaper, more flexible, smaller systems
(often employing PCs and workstations).
But, before committing to downsize such
applications, assurances about the integrity of
the data, and the ability to build sophisticated

applications are necessary. In addition, PCs
and LANs have reputations for not offering a
mainframe level of security. Client/server
computing is a solution that combines the
friendly interface of the PC or workstation
with the integrity, security, and robustness of
the mainframe. Server databases located on
PC LANs use implementations of the SQL
database access language—the standard
database language used on mainframes. Once
users have decided to build a client/server
environment, they will be on their way to
building an applications architecture that will
be economical, flexible, and portable well
into the future.

The functionality delivered by today's
client/server systems is not too different from
that of a distributed DBMS. The key
difference is that a client/server approach
places the DBMS and DBMS dictionary at a
designated node where the data resides. The
client system is required to establish a
connection with the correct server node for
access to the necessary data. This connection
can be made transparent to the applications,
but it is not transparent to the client system.
Conversely, a distributed DBMS is able to
provide transparent access to data spread
across multiple servers, with no knowledge
required on behalf of the client system as to
the whereabouts of that data beyond its
connection to the "home server." This
advanced functionality enables the database
administrator to optimize the loading of data
across the servers without making any
changes at the client systems.

Behind Client/Server

The History
Architecture
The idea for client/server computing grew out
of database machine and relational
approaches. One early visionary was Robert
Epstein. While working for Britton Lee,
Epstein envisioned the creation of a database
machine environment with a server that was a
virtual machine rather than a physically
unique piece of hardware. The system
software was then separated into a front-end
(client) which ran the program (written in a
4GL), and a back-end (server) which handled
the DBMS chores. The advantage of this idea
was the back-end (the virtual database
machine) could physically be moved out onto
a different piece of hardware if desired. What
made this different from Britton Lee's
traditional approach was that Epstein planned
for the server to be a generic VAX, UNIX®,
or PC machine, rather than a unique, custom-
built database machine. By moving the
database machine onto a standard piece of
hardware, this approach picked up the
advantage of the vastly improved price
performance to be gained from generic
systems.

About the same time that Epstein was honing
his ideas and starting Sybase to market them
(mid 1980s), Informix Software, Inc., a well
established relational DBMS vendor,
delivered on a re-architecture of its product
line, built around the client/server model and
distributed DBMS capabilities.

By now, most SQL DBMS vendors have
jumped into the client/server game. One

el ~

SERAVER

BILL OF
MATERIALS

SUPPLIER INVENTORY

Distributed Database

While dlient/server requires the client
system to connect to one server at a

time, a distributed DBMS enables the
"home server” to call other servers as

necessary to satisfy the client request.
The KOIN optimization is handled by the
"home server,” using the system
dictionary. This server node can

handle distributed transactions and

can support a global schema view.

exception is IBM. When IBM talks about
client/server computing, what they are really
referring to is distributed computing. IBM is

“in the process of building a fully functional,
distributed architecture for all of its SQL
products: DB2, SQL/DS, SQL/400, OS/2EE.
However, they are taking several years to
develop this approach.

The Components of a
Client/Server Architecture

A client/server computing environment
consists of three principal components: client,
server, and network.

The Client)
The client is where the application program
runs. Normally, client hardware is a desktop
computer such as an IBM PC, PC clone, or
Apple Mac. The application program itself
may have been written in a 4GL or third
generation language such as C or COBOL.
There is now an entire new class of Windows

4GLs that allows the painting of applications
under leading desktop, Windows-based,
operating systems.

Such Windows 4GLs support both
windows-oriented application development
and execution. Leading examples now on the
market include: Powersoft's
PowerBuilder™, JYACC's JAM®, Uniface,
and Gupta's SQLWindows. Using any of
these application building approaches will
result in a runtime configuration where the
application logic and controls come from the
client, while the database I/O and associated
semantics run on the server. At the desktop
level, most software will support the
emerging windows-based standards:
Windows 3.x for DOS, Macintosh,
Presentation Manager, Motif, and Open Look
for UNIX.

The Network _ o
The network connects the clients and

server(s). Normally, networks are based on ' S

either Ethernet or Token Ring topologies, and

CLIENT/SERVER FUNCTIONS

e SOL STATEMENTS, PROCEDURE CALLg’

RESULTS TABLES

CLIENT

APPLICATION PROGRAM
SCREEN FORMS
GENERATION OF SQL
APPLICATION CONTROL
TASK SWITCHING

NETWORK

HARDWARE/WIRE
COMMUNICATIONS SOFTWARE
MULTIPLEC& S

1 |

L

SERVER

OPTIMIZE & EXECUTE SQL
MANAGE TRANSACTIONS

BUSINESS RULE ENFORCEMENT
STORED PROCEDURES & TRIGGERS

SECURITY

CONCURRENCY MANAGEMENT
LOGGING & RECOVERY

DATABASE CREATION & DEFINITION
DATA DICTIONARY

have appropriate interface cards in both the
client and server machines. The
communications software typically handles
different types of transportation protocols,
such as SPX/IPX, LU6.2, and TCP/IP.
Most network environments provide support
for multiple clients and servers.

The Server) .
The server is responsible for executing SQL

statements received from a client. Sometimes
data requests are not communicated through
SQL, but through a remote procedure call that
triggers a series of pre-compiled, existing
SQL statements.

The server is responsible for SQL
optimization, determining the best path to the
data, maintaining data integrity, and
managing transactions. Some server
technologies support advanced software
capabilities, such as stored procedures,
schema-based integrity constraints, and
triggers. The server is responsible for data
security and requester validation.

The server will also handle additional
database functions such as concurrency
management, deadlock protection and
resolution, logging and recovery, and
database creation and definition. The idea of
managing data on a separate machine fits well
with the management approach of treating
data as a corporate resource. In addition to
executing SQL statements, the server handles
security and provides for concurrent access to
the data by multiple users.

The Benefits of Using SQL

An important benefit of the set-oriented SQL
language is network efficiency, resulting in
enhanced DBMS performance. When using
traditional, file-serving, PC LAN
approaches, the entire data file must be
transmitted across a network to the client
machine. Using SQL as a basis for the
database management system on the server
solves this problem as only the necessary
query response data (a subset of a table(s)) is
transmitted to the client machine.

CLIENT/WINDOWS 4GLs

END OCCASIONAL PROFESSIONAL
USER PROGRAMMER PROGRAMMER
QEEP?/T TECHNOLOGIES DA&?AEEQSSEE N F%gﬁﬁff GL
IMPROMPTU FOREST & TREES SQLWindows

COGNOS CHANNEL COMPUTING GUPTA TECHNOLOGIES
OBJECTVISION INFOALLIANCE PARADOX

SOFTWARE PUBLISHING CORP

BORLAND INTL
NOTEBOOK FOcus

LOTUS INFORMATION BUILDERS
Q+E VISUAL BASIC

PIONEER SOFTWARE MICROSOFT

PERSONAL

ACCESS
SPINNAKER

ASK/ANGRES

WINDOWS 4GL

BORLAND INTERNATIONAL

POWERBUILDER
POWERSOFT
UNIFACE
UNIFACE

ELLIPSE
COOPERATIVE SOLUTIONS

OPEN INSIGHT
REVELATION TECHNOLOGIES

dBASE 1V, Server Ed.
BORLAND INTERNATIONAL

Having SQL on the server also allows the
implementation of advanced facilities, such as
triggers and automatic procedures at the
database server. As relational DBMSs

evolve, they will confer the ability to build
application rules directly into the database
server. Systems that are built with this
approach will be more robust than traditional
application-based logic approaches.

Although client/server computing is being
planned for environments which use
minicomputers and mainframes as servers,
the largest market likely to develop will have
a mix of Windows 3.x, Windows NT, MS-
DOS, 0S/2, and Macintosh on the client, and
either UNIX, Windows NT, NetWare®, or
OS/2 on the server. Server software will
provide mainframe levels of security,
recovery, and data integrity capability.
Functions such as automatic locking and
commit/rollback logic, along with deadlock
detection and a full suite of data
administration utilities, are available on the
server side. Another way of looking at this,
is that SQL client/server technology allows
inexpensive PCs to be made into "industrial
strength" computing engines. This
advantage, coupled with a scalable RDBMS
server that can be implemented on a PC
server, and moved if necessary to a
superserver or minicomputer, will allow
users to build flexibility and expansion into
their system to accommodate changing needs
over time.

More Details on Distributed
DBMS

Distributed DBMSs are where the most
interesting action is happening in the large
systems DBMS market (minicomputer to
supercomputer). As SQL emerges as the
standard DBMS language, the principal
method used by DBMS vendors to
differentiate their products is to add various
functions including:

distributed and client/server computing;
support for object approaches;

« addition of database semantics; and
addition of more relational functionality
(typically semantics).

Distributed DBMS software needs to provide
all the functionality of multi-user mainframe
database software, while allowing the
database itself to reside on a number of
different, physically connected computers.
The types of functionality distributed DBMS
must supply include data integrity, disk space
management, and security. The DBMS must
prevent deadlocks and automatically recover
completed transactions, as well as roll-back
incomplete ones in the event of system
failure. It should also have the capability to
optimize data access for a wide variety of
different application demands. Additionally,
distributed DBMS should have specialized
I/O handling and space management
techniques to insure fast and stable
transaction throughput. Naturally, these
products must also have full database security
and administration utilities.

The discussion below focuses on the basic,
and then advanced functions for a distributed
DBMS. However, do not use this section as
a feature checklist since there is a great
disparity between performing these functions
at a minimum level and accomplishing them
at an advanced level.

Basic Requirements for a
Distributed DBMS

Location Transparency - Programs and
queries may access a single logical view of
the database; this logical view may be
physically distributed over a number of
different sites and nodes. Queries can access
distributed objects for both reading and
writing without knowing the location of those
objects. A change in the physical location of
objects without a change in the logical view
requires no change to the application
programs. There is support for a distributed
JOIN. In order to meet this requirement, it is
necessary for a full local DBMS and data
dictionary to reside on each database node.

Performance Transparency - It is
essential to have a software optimizer create
the navigation for the satisfaction of queries.
This software optimizer should determine the
best path to the data. Performance of the
software optimizer should not depend upon
the original source of the query. In other

words, because the query originates from
point A, it should not cost more to run than
the same query originating from point B.
This type of technology is rather primitive at
this time and will be discussed later in this
report.

Transaction Transparency - The system
needs to support transactions that update data
at multiple sites. These transactions behave
exactly the same as others that are local. This
means that transactions will either all commit
or all abort. In order to have distributed
commit capabilities, a technical protocol
known as a two-phase commit is required.

Schema Change Transparency -
Changes to database object design need only
be made once into the distributed data
dictionary. The dictionary and DBMS
automatically populate other physical
catalogs.

1) LOCATION TRANSPARENCY

Advanced Requirements for a
Distributed DBMS

Copy Transparency - The DBMS should
optionally support the capability of having
multiple physical copies of the same logical
data. Advantages of this functionality include
superior performance from local, rather than
remote, access to data, and non-stop
operation in the event of a crash at one site. If
a site is down, the software must be smart
enough to re-route a query to another data
source. The system should support fail over
reconstruction. When the down site becomes
live again, the software must automatically
reconstruct and update the data at that site.

Fragmentation Transparency - The
distributed DBMS allows a user to cut
relations into pieces horizontally or vertically,
and place them at multiple physical sites. The
software has a capability to re-combine these

DISTRIBUTED EQUIREMENTS

QUERIES CAN ACCESS DISTRIBUTED OBJECTS (DISTRIBUTED JOIN) FOR BOTH READ & WRITE
WITHOUT KNOWING THE LOCATION OF THOSE OBJECTS. THERE IS FULL LOCAL DBMS & DD.

2) PERFORMANCE TRANSPARENCY

A QUERY OPTIMIZER MUST DETERMINE THE BEST (HEURISTIC) PATH TO THE DATA.
PERFORMANCE MUST BE THE SAME REGARDLESS OF THE SOURCE NODE LOCATION.

3) TRANSACTION TRANSPARENCY

TRANSACTIONS THAT UPDATE DATA AT MULTIPLE SITES BEHAVE EXACTLY AS OTHERS THAT
ARE LOCAL. THEY COMMIT OR ABORT. THIS REQUIRES A 2-PHASE COMMIT PROTGCOL.

4) SCHEMA CHANGE TRANSPARENCY

CHANGES TO DATABASE OBJECT DESIGN NEED ONLY TO BE MADE ONCE INTO THE
DISTRIBUTED DATA DICTIONARY. THE DBMS POPULATES OTHER CATALGGS AUTOMATICALLY.

5) COPY TRANSPARENCY

MULTIPLE COPIES OF DATA MAY OPTIONALLY EXIST. IF A SITE IS DOWN, THE QUERY I8
AUTOMATICALLY ROUTED TO ANOTHER SOURCE. FAILOVER RECONSTRUCTION I8 SUPPORTED.

6) FRAGMENT TRANSPARENCY

THE DDBMS ALLOWS A USER TO CUT A RELATION INTO PIECES, HORIZONTALLY OR

VERTICALLY, AND PLACE THEM AT MULTIPLE SITES.
7) LOCAL DBMS TRANSPARENCY

THE DDBMS SERVICES ARE PROVIDED REGARDLESS OF THE LOCAL DBMS BRAND. THIS MEANS
THAT RDA AND GATEWAYS INTO HETEROGENEQUS DBMS PRODUCTS ARE NECESSARY.

optimizer, navigation to data is under
programmer control, violating a basic precept
of relational theory. (This is what must be
done with several earlier RDBMSs, such as
Oracle prior to 7.0.) Without such an
optimizer, only known queries can be
handled, since the performance of an
unanticipated query may be extremely poor.

A reasonable software optimizer has to be
intelligent enough to evaluate many potential
options, and to develop a correct search
strategy based upon the results of that
evaluation. Examples of the types of issues
that should be evaluated follow.

Questions that pertain to the data and its

structures:

1. What are the absolute and relative sizes of
the tables that have to be accessed?

2. How are the tables organized? Is there an
index? How many levels of indexing?

3. What are the access patterns in the
indexes?

4. How many rows will result from this

query?

Questions that pertain to the extra cost of

moving data across a network:

1. What is the distance between the nodes?

2. Whatis the line speed between these
nodes?

3. What are the relative speeds of these node
machines?

Based on the answers to the above questions,
the optimizer decides where the actual work
should take place, and instigates it.

Two-Phase Commit Protocol

The goal of the two-phase commit protocol is
to allow multiple nodes to be updated
synchronously as the result of a group of
SQL statements, which are either committed
or rejected together.

The general procedure for a two-phase
commit follows.

Evolving Technology Behind
Distributed Databases

PHASE 1 - REMOTE REQUEST

NOW

* Single remote SQL request

* No unit of work

10

APPLICATION B & REMOTE db
* No commit
PHASE 2 - REMOTE UNIT OF WORK NOW
UNIT REMOTE dbt * Read only from multiple sites
APPLICATION u(”;j:’d ‘Updalesinglesites
\! REMOTE db2
PHASE 3 - DISTRIBUTED UNIT OF WORK 1992/3

* Multi-site update

g REMOTE db1
UNIT 1 . .
APPLICATION Read only repficates
5 REMOTE db2 Has two-phase commit
PHASE 4 - DISTRIBUTED REQUEST 1094
4l REMOTE dbt * Distrib. Catalog

UNIT 1 saL 1

APPLICATION g I REMOTE db2

g REMOTE db3

* Multi-site JOIN, UNION

* Full replicates

1. One node is designated as a master; the
master sends notice of an upcoming
query out to all of the slaves.

The slaves respond with ready messages
when all of the data necessary for the
protocol is available.

The master sends out a "prepare”
message to the slaves.

The slaves lock and log the necessary
data and respond with a "prepared”
message to the master.

The master sends a "commit” message to
the slaves.

The slaves respond with a "done”
message.

For the DBMS software vendor, developing
a two-phase commit protocol is one of the
most challenging tasks. The additional
complexity in this type of software comes
from the fact that there are different types of
failure modes, and the software needs to
recover from any combination of failures
over all of the supported environments. For
the user, operation in an environment
requiring a two-phase commit may be very
costly. The extra cost is incurred because a
two-phase commit requires an extra round-
trip message above the normal number of

messages that occur in single computer
systems.

Standards for implementing a two-phase
commiit are slowly emerging. Both the ISO
and X/Open standards groups have
established distributed transaction processing
(DTP) standards, and have established a
"presumed abort," two-phase commit
algorithm as part of this DTP standard.
Various DBMS vendors have started to base
their implementations on these emerging
standards, while others are offering different
home-grown implementations.

More Advanced Capabilities for
Distributed or Client/Server
DBMS

o Gateways - Many of the distributed
DBMS and client/server DBMS products
have optional gateways that allow access to
data stored in other DBMSs. Lower levels of
functionality provide for read-only access,
while higher levels of functionality allow
write access, as well. This higher level
should be accompanied by a two-phase

Svnchronizeg

Now the source disagrees

Application 1

read S et
modify
restore

update N
C T TT1 \

Appllcatlon 2 i

restore

Possible solutions involve:

>Master control program to coordinate updates

>2-phase commit - records are acted upon as if they had been stored
in database, but don't get stored until SYNCH point. \

>Only synchronize on batch (e.g., daily) basis. Control with rules.

v read
A modify
restore

11

commit capability across the different
systems (general availability of this capability
is still in the future).

o Distributed Access - A technology
that is closely related to distributed DBMS.
Distributed access refers to the building of
gateways that allow one DBMS to access data
stored in another. This can properly be
thought of as a subset of the technologies
being delivered by vendors selling distributed
DBMS or client/server DBMS technologies.
The demand for distributed access is greatest
for popular mainframe file and database
environments, such as IBM's IMS, DB2,
VSAM, and DEC's Rdb. Local DBMS
capability is not a requirement for distributed
access. Instead, most vendors provide a piece
of software known as a requester to be run
on the client side of the distributed
environment. Some of the products in this
market are not finished gateways but tool kits
so that users can build custom gateways.

° Relational Integrity - An important
server function that supports increased
productivity in application development. This
can include features such as referential
integrity, or the ability to state business rules
directly into the database using schema
extensions (the ANSI-SQL approach), stored
procedures, or program triggers.

o Integrity Constraints - Integrity
constraints are provided to enforce data
integrity at the server, thereby providing
consistent enforcement across individual
applications. The ANSI-SQL standard on
integrity constraints provides for the
following areas:

e default values, where no explicit value is
supplied;

< check constraints, where each row
entered or updated must pass the check
constraint; and

» referental constraints, which enforce the
parent-child (or master-detail)
relationship. This will cause the database
server to deny any request from the client
which would result in the existence of a
"child" without the existence of its
corresponding "parent” record.

12

The ANSI standard prescribes that these
integrity constraints all be defined as
extensions to the schema, rather than relying
on programmers to correctly code a stored
procedure to handle the multitude of instances
of enforcement.

o Stored Procedures and Triggers -
Stored procedures are small SQL programs
written in SQL and the stored procedure
language, that are stored in the DBMS
catalog. Stored procedures can be called by
the application logic, and are used to apply
common logic across application programs
and to reduce network traffic by applying one
call across the network that can activate
execution of the logic at the server. Triggers
can be set to launch a stored procedure when
data is modified. Each trigger is associated
with a particular table and an SQL DML
function (i.e., update, delete, and insert).
Triggers are automatically executed whenever
a transaction implements the triggering action
against the table. Users can write stored
procedures and attach triggers to enforce any
database validation rule, but triggers are most
appropriate for entering business rules that
aren't within the scope of the ANSI standard
integrity constraints discussed previously.

Since stored procedures and triggers are
stored in the catalog and executed at the
server, they promote consistent integrity
constraints across all transactions. This
results in rules that are enforceable for any
applications that access the database, such as
spreadsheet programs. They are also an aid to
maintenance because they are stored in only
one place, rather than embedded within many
different applications.

* Multi-Threaded Architecture - For
the best distributed, or client/server
performance, the DBMS should implement a
multi-threaded architecture. Mult-threaded
servers perform most of their work and
scheduling without interacting with the
operating system. Instead of creating user
processes, multi-threaded servers create a
thread for each new user, and share multiple
threads within a smaller number of
processes. Threads are more efficient than
processes, and they use less memory and
CPU resources. A multi-threaded DBMS

server can service 10 to 40 users
simultaneously on a machine as small as a 33
MHz, 80386 PC with 10 MB of RAM.

o Symmetric MultiProcessing -
Another advantage for DBMS servers is
direct support of multiprocessor hardware
architectures in a symmetric multiprocessing
(SMP) mode. Currently, most operating
systems (UNIX, Windows NT, VMS), and
soon OS/2, offer support for this
functionality. Therefore, there needs to be
effective integration between the DBMS and
operating system to take advantage of the
potentially improved throughput.

Direct support for SMP means the DBMS can
take advantage of several parallel processors
under the same skin (with an appropriate
operating system). These processors can be
either tightly or loosely coupled.

» Cursors - A cursor stores the results of
an SQL query and allows a program to move
forward through the data, one record at a
time. Sometimes, programmers are also able
to move backward within a cursor. Without a
cursor, it's harder to program transactions to
browse through data.

o Text, Image, Date, and other
Extended Data Types - Support for
different types of data can make any DBMS
useful in a wider variety of applications. To
store a picture, it would be useful to have
something like Byte or Image data types for
binary data. Another useful item is TEXT
data types, which are printable character
strings.

o Remote Procedure Calls (RPC) -
RPCs allow an application on one server (or
client) to execute a stored procedure on
another server. Stored procedures enhance
computing performance since all of the
commands can be executed with one call
from the application program.

o Multi-Platform Implementations -
Another primary advantage of a robust
DBMS is multi-platform portability and
networking. If software runs on many
different vendors' hardware, then there is
much more flexibility. For example, Informix

has been implemented on approximately 400
different hardware systems.

o Disk Mirroring - For companies
wanting the reliability of mainframe
environments on a PC LAN, a disk, or a
server, database mirroring capability is
necessary. Mirroring implies that dual
operations are executed for each computing
step with error reports whenever there is any
difference between the results of the dual
steps. Mirroring also allows the system to
continue to operate at essentially full speed,
even after one of the processors or disks has
failed. Disk mirroring is supported through
the process called "shadowing." This is a
very useful facility for applications that
require extremely low amounts of down

time—if one disk fails, then the system will
automatically divert and use the other disk
without interrupting operations.

e BLOB Data Types - A binary large
object (BLOB) data type has no size limit and
can include unstructured, non-relational types
of data such as text, images, graphics, and
digitized voice. One way to handle BLOBs is
as a single field in a record, like a name, date,
or floating point number. It can then be
governed by concurrency and transaction
control.

The ability to create "database macros,"
which can be executed by the database
server, should be supported within the
DBMS. These macros are implemented as
centrally-stored, user-written procedures that
tell the database system how to translate
BLOB data to another format. Because they
are stored in one place and managed by the
DBMS server, BLLOB macros are easier to
create and maintain than similar code in an
application.

o Application Specific Functions -
This capability allows a user to easily extend
the range of database commands by adding
new functions, coded in C, to the DBMS
kernel. This facility is helpful in the
manipulation of BLOB data.

13

UNIX today, and NT, NetWare, and OS/2 in
the future, will support symmetric
multiprocessing on the server. This will
allow scalability of database applications well
up into supercomputing performance
categories. Today, Sequent Computer, and
its multiprocessing server product line is
probably considered the leader in high
transaction rate database-oriented processing,
with HP, Sun, and Pyramid following
closely.

The client environment is typically a smaller,
but powerful PC that has enough power to
run applications on top of multitasking,
single-user operating systems such as
Windows 3.1 or OS/2.

The concept of using a large mainframe such
as a VAX 9000 or ES/9000 as a database
server to networks is discussed by the
mainframe vendors. For these machines to
play a role in future networks, however, it is
clear that they will have to adopt server
functionality by acquiring and supporting
emerging downsizing standards such as
UNIX, NetWare, LAN Manager for

Window's NT, and LAN Server for OS/2.

Performance from a Client/Server
Environment

Users might be skeptical of the claim that
PCs running server software can perform as
well as mainframes, but there is documented
evidence to this effect. The most efficient PC
server operating system at this time is
probably NetWare. Tests run in conformance
with the Transaction Processing Council's
standards have shown that a sampling of
available RDBMS servers are capable of
running about 50 transactions per second
(TPS) on 486-based PCs.

This number would not be unreasonable for a
mainframe running IBM's DB2. Mid-size
banks with over 100,000 transactions per day
have run complete on-line teller systems
against an SQL DBMS server running on a
single processor 486 server. These cases
were for a mixed DOS and NetWare
environment with a DOS server running the
database and a NetWare server handling file

PLAYERS IN THE DOWNSIZING
OPEN SYSTEMS SERVER MARKET

GUPTA TECHNOLOGIES, INC.
iBM

INFORMIX SOFTWARE, INC.
ASK/INGRES DIVISION
MICROSOFT/SYBASE
NOVELL

ORACLE

SYBASE

XDB SYSTEMS INC.
BORLAND

PROGRESS SOFTWARE

SQLBase

OS/2EE DATABASE MANAGER
INFORMIX-OnLine
INTELLIGENT DATABASE
SQL SERVER

NETWARE SQL

ORACLE SERVER

SQL SERVER
XDB-SERVER
INTERBASE

PROGRESS

15

and $40,000 per TPS. IMS-based MVS
mainframe environments typically yield a cost
of $50,000 to $75,000 per TPS.
Alternatively, using the combination of MVS
and DB2 as a transaction processing engine
will typically cost over $100,000 per TPS.
This means that, based upon full
development, maintenance, hardware,
software, and staff costs, SQL client/server
computing is likely to result in finished
systems that cost only a small fraction of
what building transaction systems have cost
in the past. Actual case studies confirm this
type of important savings in finished,
delivered systems.

Of course, there are many applications that
are simply too large to contemplate running
on even robust PCs. Client/server
architectures allow you to design the
application once, and then without change,
port it to whichever server has the database
processing power needed to manage the
database. This allows application
development on PC-style servers, and
porting to the new generation of "super-
servers," or minicomputers built to run open
operating systems powered by
multiprocessing versions of merchant CPU
chips. The approach is to take
microprocessor-based technologies and
combine them with high speed buses,
channels, and parallel computing
architectures to create platforms that can run
with the fastest minicomputers. Vendors such
as Compagq, Pyramid, and Sequent are
building parallel processing machines using
CISC or RISC microprocessor units capable
of reaching a sustained processing capability
of hundreds of MIPS. Do not be surprised to
see a combination of these new hardware
systems with software from companies like
Informix, Sybase, Microsoft, and Oracle
delivering computing technologies
comparable to IBM's largest machines, but at
a tiny fraction of the cost.

As a first project, it is clearly more
comfortable to use client/server computing
for mostly read-only, or decision support
environments. The very large, tough
performance-based applications, such as
retail credit card verification or airline
reservations, require reliable processing of

hundreds of transactions per second and are
still largely relegated to mainframes only.
However, as mentioned earlier, there is no
shortage of serious transaction processing
applications that have already been
successfully implemented on top of
client/server SQL environments.

In the future, expect multi-processor-based
client/server architectures to regularly take on
mainframe types of applications. It is very
reasonable to envision products like
Informix, Oracle and Sybase in combination
with high-end super-servers from companies
such as Sequent, Pyramid, HP, Sun,
Compagq, IBM, or DEC. This high-end
super-server hardware is typically built with
parallel Intel 486, 586, and/or RISC chips
from MIPS, DEC or Sun. By configuring a
server with a multiprocessor design and an
open operating system that supports it (e.g.,
UNIX, NT, OS§/2, or LAN Manager), a
vendor can build a machine with hundreds of
MIPS processing power and 250 GB of disk
data storage for well under $500,000.
Combining this technology with high-speed
channels and a client/server DBMS, allows a
configuration of new technology hardware
and database servers to be considered as a
replacement for a $14 million IBM System
390 running DB2. With a potential savings of
almost 95%, this would appear to be an offer
well worth considering for many computing
environments.

Conclusion-A Reality Check

The various advantages of distributed
processing and distributed DBMS are both
well documented and considerable, especially
for companies that wish to take advantage of
new computing styles featuring graphical
interfaces and distributed implementatdon.
Migrating to these new technologies,
however, requires serious investments in the
training and building of expertise for the new
systems. There do exist potential problems
associated with taking advantage of the
advanced capabilities of distributed DBMSs.
Below is a quick summary of some of the
problems associated with this technology.

17

18

. Communication costs can be quite high;

and, using a two-phase commit protocol
tends to generate a considerable amount
of communications traffic.

There is the need for gateway technology
o handle the SQL differences among
different DBMS vendors. This is not
always available today.

. The predictability of total costs for

distributed queries is variable. In other
words, it is difficult to predict how much
it will cost to complete a job.

Supporting concurrency, in addition to
deadlock protection, is very difficult.

. Supporting full recovery with fail over

reconstruction is expensive.

. Performing a JOIN across different

physical nodes is expensive, using
today's technology and networks.

Some advanced relational functions,
reasonable for single computers, are
difficult and expensive across distributed
networks (e.g., the enforcing of semantic
integrity restraints).

. The job of database administrators is

more difficult because, above and beyond
their current functions, they need to
understand the integrity, optimizer,
communication, and data ownership
issues of the distributed world.

Data security issues are neither well
understood nor proven. It would appear
that a distributed environment is more
susceptible to security breaks than a

database which is contained in one
machine.

Please recognize this as a list of potential
pitfalls that await (in most cases) the
advanced user of this new technology. As in
the case of most new technologies, the well-
advised user should take small steps while
the approach is mastered before moving onto
the more complex conversions or
implementations. Many companies will find
the client/server approach to be easier to
implement initially. Investments made in such
an approach will likely migrate towards a
distributed database if later desired.

At a rate of 50 TPC-B transactions per
second, a (currently) large PC is capable of
running an SQL DBMS and delivering
services comparable to most of the IMS
applications in existence today. The ability to
create these applications with the ease
associated with SQL databases and GUI
screen painters is something that users only
could have dreamed about in the mid-1980s.
Prototyping approaches in building these
applications means that significant ime-
savings will be realized in better looking and
more flexible 1990s approaches. The era of
PC LAN-based systems has arrived, and will
dominate the systems building paradigm for
the foreseeable future.

Users should pay close attention to picking a
software partner. The vendor(s) who
provides a DBMS and development tools
should be selected most carefully. In an era
of open and replaceable hardware and
operating systems, DBMS and development
tools vendors will be a most important
element of long term system strategies.

Distributed and Client/Server DBMS © George Schussel, 1992

